Great things from small things

Tesla is revolutionizing batteries for electric bicycles and it has to do with the recent changes at the leading battery cell makers BMZ, Panasonic, Sony, Samsung and LG. Together these five make out some 80% of the world production of battery cells.

These five cell makers used to supply huge numbers of cylindrical shaped cells to the IT industry until the industry changed completely from using cylindrical shaped cells to flat shaped batteries which are now used in laptops, tablets and smartphones. Tesla placing huge orders for cylindrical shaped cells pushed battery cell makers to new highs.

Europe’s largest battery maker BMZ boss introduced the 21700 cell that will revolutionize electric bicycles. In particular as the 21700 cell not only offers a much prolonged lifetime but also batteries with a much bigger capacity for more power and pedal-supported mileage.

The extraordinary features that the 21700 battery cell brings to e-bikes will be the new standard in e-bike batteries. And that this new standard will already be available in 2018.

Instead of the current 18650 (18mm diameter and 65mm high) cell size the 21700 cell is 21mm diameter and 70mm high. The bigger size is bringing a bigger output; up to 4.8Ah. With that capacity the battery lifetime is extended from the current some 500 charging cycles up to 1,500 to 2,000 cycles.

BMZ, together with another global battery player, managed to develop batteries that offer a much longer lifespan thanks to the fact that the new batteries create less heat and has up to 60% more capacity.

Credit: CC0 Public Domain


Researchers have developed a solar paint that can absorb water vapour and split it to generate hydrogen – the cleanest source of energy.

The paint contains a newly developed compound that acts like silica gel, which is used in sachets to absorb moisture and keep food, medicines and electronics fresh and dry.

But unlike silica gel, the new material, synthetic molybdenum-sulphide, also acts as a semi-conductor and catalyses the splitting of water atoms into hydrogen and oxygen.

Lead researcher Dr Torben Daeneke, from RMIT University in Melbourne, Australia, said: “We found that mixing the compound with titanium oxide particles leads to a sunlight-absorbing paint that produces hydrogen fuel from solar energy and moist air.

“Titanium oxide is the white pigment that is already commonly used in wall paint, meaning that the simple addition of the new material can convert a brick wall into energy harvesting and fuel production real estate.

“Our new development has a big range of advantages,” he said. “There’s no need for clean or filtered water to feed the system. Any place that has water vapour in the air, even remote areas far from water, can produce fuel.”

His colleague, Distinguished Professor Kourosh Kalantar-zadeh, said hydrogen was the cleanest source of energy and could be used in fuel cells as well as conventional combustion engines as an alternative to fossil fuels.

“This system can also be used in very dry but hot climates near oceans. The sea water is evaporated by the hot sunlight and the vapour can then be absorbed to produce fuel.

“This is an extraordinary concept – making fuel from the sun and water vapour in the air.”

 

More information: Torben Daeneke et al, Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides:
Electrolyteless Gas Phase Water Splitting, ACS Nano (2017). DOI: 10.1021/acsnano.7b01632

Provided by: RMIT University

Could a new material involving a carbon nanotube and graphene hybrid put an end to the dendrite problem in lithium batteries? (Credit: Tour Group/Rice University)

The high energy capacity of lithium-ion batteries has led to them powering everything from tiny mobile devices to huge trucks. But current lithium-ion battery technology is nearing its limits and the search is on for a better lithium battery. But one thing stands in the way: dendrites. If a new technology by Rice University scientists lives up to its potential, it could solve this problem and enable lithium-metal batteries that can hold three times the energy of lithium-ion ones.

Dendrites are microscopic lithium fibers that form on the anodes during the charging process, spreading like a rash till they reach the other electrode and causing the battery to short circuit. As companies such as Samsung know only too well, this can cause the battery to catch fire or even explode.

“Lithium-ion batteries have changed the world, no doubt,” says chemist Dr. James Tour, who led the study. “But they’re about as good as they’re going to get. Your cellphone’s battery won’t last any longer until new technology comes along.”

Rice logo_rice3So until scientists can figure out a way to solve the problem of dendrites, we’ll have to put our hopes for a higher capacity, faster-charging battery that can quell range anxiety on hold. This explains why there’s been no shortage of attempts to solve this problem, from using Kevlar to slow down dendrite growth to creating a new electrolyte that could lead to the development of an anode-free cell. So how does this new technology from Rice University compare?

For a start, it’s able to stop dendrite growth in its tracks. Key to it is a unique anode made from a material that was first created at the university five years ago. By using a covalent bond structure, it combines a two-dimensional graphene sheet and carbon nanotubes to form a seamless three-dimensional structure. As Tour explained back when the material was first unveiled:

“By growing graphene on metal (in this case copper) and then growing nanotubes from the graphene, the electrical contact between the nanotubes and the metal electrode is ohmic. That means electrons see no difference, because it’s all one seamless material.”

Close-up of the lithium metal coating the graphene-nanotube anode (Credit: Tour Group/Rice University)

 

Envisioned for use in energy storage and electronics applications such as supercapacitors, it wasn’t until 2014, when co-lead author Abdul-Rahman Raji was experimenting with lithium metal and the graphene-nanotube hybrid, that the researchers discovered its potential as a dendrite inhibitor.

“I reasoned that lithium metal must have plated on the electrode while analyzing results of experiments carried out to store lithium ions in the anode material combined with a lithium cobalt oxide cathode in a full cell,” says Raji. “We were excited because the voltage profile of the full cell was very flat. At that moment, we knew we had found something special.”

Closer analysis revealed no dendrites had grown when the lithium metal was deposited into a standalone hybrid anode – but would it work in a proper battery?

To test the anode, the researchers built full battery prototypes with sulfur-based cathodes that retained 80 percent capacity after more than 500 charge-discharge cycles (i.e. the rough equivalent of what a cellphone goes through in a two-year period). No signs of dendrites were observed on the anodes.

How it works

The low density and high surface area of the nanotube forest allow the lithium metal to coat the carbon hybrid material evenly when the battery is charged. And since there is plenty of space for the particles to slip in and out during the charge and discharge cycle, they end up being evenly distributed and this stops the growth of dendrites altogether.

According to the study, the anode material is capable of a lithium storage capacity of 3,351 milliamp hours per gram, which is close to pure lithium’s theoretical maximum of 3,860 milliamp hours per gram, and 10 times that of lithium-ion batteries. And since the nanotube carpet has a low density, this means it’s able to coat all the way down to substrate and maximize use of the available volume.

“Many people doing battery research only make the anode, because to do the whole package is much harder,” says Tour. “We had to develop a commensurate cathode technology based upon sulfur to accommodate these ultrahigh-capacity lithium anodes in first-generation systems. We’re producing these full batteries, cathode plus anode, on a pilot scale, and they’re being tested.”

The study was published in ACS Nano.

Source: Rice University

Electrodes are critical parts of every battery architecture — charge too fast, and you can decrease the charge-discharge cycle life or damage the battery so it won’t charge anymore. Scientists have built a new design and chemistry for electrodes. Their design involves advanced, nanostructured electrodes containing molybdenum disulfide and carbon nanofibers (Advanced Energy Materials, “Pseudocapacitive charge storage in thick composite MoS2 nanocrystal-based electrodes”). These composite materials have internal atomic-scale pathways. These paths are for both fast ion and electron transport, allowing for fast charging.

Fast Charge batteries vid47065

Battery electrodes made of a molybdenum disulfide nanocrystal composite have internal pathways to allow lithium ions to move quickly through the electrode, speeding up the rate that the battery can charge. The key features in the structure that enable the flow of the lithium ions are the small, 20-40 nanometer, diameter of the nanocrystals (in contrast, human hairs are about 100,000 nanometers in diameter) coupled with the porosity and planar lamellar pathways shown in the electron micrograph. (Image: Sarah Tolbert, University of California, Los Angeles) 
The new battery electrodes provide several benefits. The electrodes allow fast charging. They also have stable charge/discharge behavior, so the batteries last longer. These electrodes show promise for practical electrical energy storage systems.
New battery electrodes based on nanostructured molybdenum disulfide combine the ability to charge in seconds with high capacity and long cycle life. Typical lithium-ion batteries charge slowly due to slow diffusion of lithium ions within the solid electrode.
Another type of energy storage device (a.k.a., pseudocapacitors), which has similarities to the capacitors found in common electrical circuits, speeds up the charging process by using reactions at or near the electrode surface, thus avoiding slow solid-state diffusion pathways.
Nanostructured electrodes allow the creation of large surface areas so that the battery can work more like a pseudocapacitor. In this work at the University of California, Los Angeles, scientists made nanostructured electrodes from a molybdenum disulfide-carbon composite.
Many electrodes are based on metal oxides, but because sulfur more weakly interacts with lithium than oxygen, lithium atoms can move more freely in the metal sulfide than the metal oxide. The result is a battery electrode that shows high capacity and very fast charging times.
The novel electrodes deliver specific capacities of 90 mAh/g (about half that of a typical lithium-ion battery cathode) charging in less than 20 seconds, and retain over 80 percent of their original capacity after 3,000 charge/discharge cycles. Capacities of greater than 180 mAh/g (similar to cathodes in conventional lithium-ion cells) are achieved at slower charging rates.
The results have exciting implications for the development of fast-charging energy storage systems that could replace traditional lithium-ion batteries.
Source: U.S. Department of Energy, Office of Science

Battery stores energy in nontoxic, noncorrosive aqueous solutions

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a new flow battery that stores energy in organic molecules dissolved in neutral pH water.

This new chemistry allows for a non-toxic, non-corrosive battery with an exceptionally long lifetime and offers the potential to significantly decrease the costs of production.

The research, published in ACS Energy Letters, was led by Michael Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies and Roy Gordon, the Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science.

Flow batteries store energy in liquid solutions in external tanks — the bigger the tanks, the more energy they store.

 

Read The Full Article Long-lasting flow battery could run for more than a decade with minimum upkeep – Harvard Paulson School of Engineering

Electrodes containing porous graphene and a niobia composite could help improve electrochemical energy storage in batteries. This is the new finding from researchers at the University of California at Los Angeles who say that the nanopores in the carbon material facilitate charge transport in a battery.

By fine tuning the size of these pores, they can not only optimize this charge transport but also increase the amount of active material in the device, which is an important step forward towards practical applications.

Batteries and supercapacitors are two complementary electrochemical energy-storage technologies. They typically contain positive and negative electrodes with the active electrode materials coated on a metal current collector (normally copper or aluminium foil), a separator between the two electrodes, and an electrolyte that facilitates ion transport.

The electrode materials actively participate in charge (energy) storage, whereas the other components are passive but nevertheless compulsory for making the device work.

Batteries offer high energy density but low power density while supercapacitors provide high power density with low energy density.

Although lithium-ion batteries are the most widely employed batteries today for powering consumer electronics, there is a growing demand for more rapid energy storage (high power) and higher energy density. Researchers are thus looking to create materials that combine the high-energy density of battery materials with the short charging times and long cycle life of supercapacitors.

Such materials need to store a large number of charges (such as Li ions) and have an electrode architecture that can quickly deliver charges (electrons and ions) during a given charge/discharge cycle.

Read the Full Article “Holey” graphene improves battery electrodes – May be ‘The Holy Grail’ of Next Generation Batteries

Researchers from UCLA and the University of Connecticut have designed a new biofriendly energy storage system called a biological supercapacitor, which operates using charged particles, or ions, from fluids in the human body. The device is harmless to the body’s biological systems, and it could lead to longer-lasting cardiac pacemakers and other implantable medical devices.   The UCLA team was led by Richard Kaner, a distinguished professor of chemistry and biochemistry, and of materials science and engineering, and the Connecticut researchers were led by James Rusling, a professor of chemistry and cell biology.

A paper about their design was published this week in the journal Advanced Energy Materials.   Pacemakers — which help regulate abnormal heart rhythms — and other implantable devices have saved countless lives. But they’re powered by traditional batteries that eventually run out of power and must be replaced, meaning another painful surgery and the accompanying risk of infection. In addition, batteries contain toxic materials that could endanger the patient if they leak.

The researchers propose storing energy in those devices without a battery. The supercapacitor they invented charges using electrolytes from biological fluids like blood serum and urine, and it would work with another device called an energy harvester, which converts heat and motion from the human body into electricity — in much the same way that self-winding watches are powered by the wearer’s body movements. That electricity is then captured by the supercapacitor.   “Combining energy harvesters with supercapacitors can provide endless power for lifelong implantable devices that may never need to be replaced,” said Maher El-Kady, a UCLA postdoctoral researcher and a co-author of the study.

Modern pacemakers are typically about 6 to 8 millimeters thick, and about the same diameter as a 50-cent coin; about half of that space is usually occupied by the battery. The new supercapacitor is only 1 micrometer thick — much smaller than the thickness of a human hair — meaning that it could improve implantable devices’ energy efficiency. It also can maintain its performance for a long time, bend and twist inside the body without any mechanical damage, and store more charge than the energy lithium film batteries of comparable size that are currently used in pacemakers.   “Unlike batteries that use chemical reactions that involve toxic chemicals and electrolytes to store energy, this new class of biosupercapacitors stores energy by utilizing readily available ions, or charged molecules, from the blood serum,” said Islam Mosa, a Connecticut graduate student and first author of the study.

The new biosupercapacitor comprises a carbon nanomaterial called graphene layered with modified human proteins as an electrode, a conductor through which electricity from the energy harvester can enter or leave. The new platform could eventually also be used to develop next-generation implantable devices to speed up bone growth, promote healing or stimulate the brain, Kaner said.

Although supercapacitors have not yet been widely used in medical devices, the study shows that they may be viable for that purpose.   “In order to be effective, battery-free pacemakers must have supercapacitors that can capture, store and transport energy, and commercial supercapacitors are too slow to make it work,” El-Kady said. “Our research focused on custom-designing our supercapacitor to capture energy effectively, and finding a way to make it compatible with the human body.”   Among the paper’s other authors are the University of Connecticut’s Challa Kumar, Ashis Basu and Karteek Kadimisetty. The research was supported by the National Institute of Health’s National Institute of Biomedical Imaging and Bioengineering, the NIH’s National Institute of Environmental Health Sciences, and a National Science Foundation EAGER grant.   Source and top image: UCLA Engineering

“The solar energy business has been trying to overcome … challenge for years. The cost of installing solar panels has fallen dramatically but storing the energy produced for later use has been problematic.”

Solar Crash I solar-and-wind-energy“In a single hour, the amount of power from the sun that strikes the Earth is more than the entire world consumes in an year.” To put that in numbers, from the US Department of Energy  Each hour 430 quintillion Joules of energy from the sun hits the Earth. That’s 430 with 18 zeroes after it! In comparison, the total amount of energy that all humans use in a year is 410 quintillion JoulesFor context, the average American home used 39 billion Joules of electricity in 2013.

HOME SOLAR-master675Read About: What are the Most Efficient Solar Panels on the Market?

 

Clearly, we have in our sun “a source of unlimited renewable energy”. But how can we best harness this resource? How can we convert and  “store” this energy resource on for sun-less days or at night time … when we also have energy needs?

Now therein lies the challenge!

Would you buy a smartphone that only worked when the sun was shining? Probably not. What it if was only half the cost of your current model: surely an upgrade would be tempting? No, thought not.

The solar energy business has been trying to overcome a similar challenge for years. The cost of installing solar panels has fallen dramatically but storing the energy produced for later use has been problematic.

Now scientists in Sweden have found a new way to store solar energy in chemical liquids. Although still in an early phase, with niche applications, the discovery has the potential to make solar power more practical and widespread.

Until now, solar energy storage has relied on batteries, which have improved in recent years. However, they are still bulky and expensive, and they degrade over time.

Image: Energy and Environmental Science

Trap and release solar power on demand

A research team from Chalmers University of Technology in Gothenburg made a prototype hybrid device with two parts. It’s made from silica and quartz with tiny fluid channels cut into both sections.

The top part is filled with a liquid that stores solar energy in the chemical bonds of a molecule. This method of storing solar energy remains stable for several months. The energy can be released as heat whenever it is required.

The lower section of the device uses sunlight to heat water which can be used immediately. This combination of storage and water heating means that over 80% of incoming sunlight is converted into usable energy.

Suddenly, solar power looks a lot more practical. Compared to traditional battery storage, the new system is more compact and should prove relatively inexpensive, according to the researchers. The technology is in the early stages of development and may not be ready for domestic and business use for some time.

From the lab to off-grid power stations or satellites?

The researchers wrote in the journal Energy & Environmental Science: “This energy can be transported, and delivered in very precise amounts with high reliability(…) As is the case with any new technology, initial applications will be in niches where [molecular storage] offers unique technical properties and where cost-per-joule is of lesser importance.”

A view of solar panels, set up on what will be the biggest integrated solar panel roof of the world, in a farm in Weinbourg, Eastern France February 12, 2009. Bright winter sun dissolves a blanket of snow on barn roofs to reveal a bold new sideline for farmer Jean-Luc Westphal: besides producing eggs and grains, he is to generate solar power for thousands of homes. Picture taken February 12. To match feature FRANCE-FARMER/SOLAR REUTERS/Vincent Kessler (FRANCE) - RTXC0A6 Image: REUTERS: Kessler

The team now plans to test the real-world performance of the technology and estimate how much it will cost. Initially, the device could be used in off-grid power stations, extreme environments, and satellite thermal control systems.

Editor’s Note: As Solomon wrote in  Ecclesiastes 1:9:What has been will be again, what has been done will be done again; there is nothing new under the sun.”

Storing Solar Energy chemically and converting ‘waste heat’ has and is the subject of many research and implementation Projects around the globe. Will this method prove to be “the one?” This writer (IMHO) sees limited application, but not a broadly accepted and integrated solution.

Solar Energy to Hydrogen Fuel

So where does that leave us? We have been following the efforts of a number of Researchers/ Universities who are exploring and developing “Sunlight to Hydrogen Fuel” technologies to harness the enormous and almost inexhaustible energy source power-house … our sun! What do you think? Please leave us your Comments and we will share the results with our readers!

Read More

We have written and posted extensively about ‘Solar to Hydrogen Renewable Energy’ – here are some of our previous Posts:

Sunlight to hydrogen fuel 10-scientistsusScientists using sunlight, water to produce renewable hydrogen power

Rice logo_rice3Solar-Powered Hydrogen Fuel Cells

Researchers at Rice University are on to a relatively simple, low-cost way to pry hydrogen loose from water, using the sun as an energy source. The new system involves channeling high-energy “hot” electrons into a useful purpose before they get a chance to cool down. If the research progresses, that’s great news for the hydrogen […]

HyperSolar 16002743_1389245094451149_1664722947660779785_nHyperSolar reaches new milestone in commercial hydrogen fuel production

HyperSolar has achieved a major milestone with its hybrid technology HyperSolar, a company that specializes in combining hydrogen fuel cells with solar energy, has reached a significant milestone in terms of hydrogen production. The company harnesses the power of the sun in order to generate the electrical power needed to produce hydrogen fuel. This is […]

riceresearch-solar-water-split-090415 (1)Rice University Research Team Demonstrates Solar Water-Splitting Technology: Renewable Solar Energy + Clean – Low Cost Hydrogen Fuel

Rice University researchers have demonstrated an efficient new way to capture the energy from sunlight and convert it into clean, renewable energy by splitting water molecules. The technology, which is described online in the American Chemical Society journal Nano Letters, relies on a configuration of light-activated gold nanoparticles that harvest sunlight and transfer solar energy […]

NREL I downloadNREL Establishes World Record for Solar Hydrogen Production

NREL researchers Myles Steiner (left), John Turner, Todd Deutsch and James Young stand in front of an atmospheric pressure MDCVD reactor used to grow crystalline semiconductor structures. They are co-authors of the paper “Direct Solar-to-Hydrogen Conversion via Inverted Metamorphic Multijunction Semiconductor Architectures” published in Nature Energy. Photo by Dennis Schroeder.   Scientists at the U.S. […]

NREL CSM Solar Hydro img_0095NREL & Colorado School of Mines Researchers Capture Excess Photon Energy to Produce Solar Fuels

Photo shows a lead sulfide quantum dot solar cell. A lead sulfide quantum dot solar cell developed by researchers at NREL. Photo by Dennis Schroeder.

Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have developed a proof-of-principle photo-electro-chemical cell capable of capturing excess photon energy normally lost to generating heat. Using quantum […]

MIT 1-implantable-film-MIT

MIT professor Paula Hammond (right) and Bryan Hsu PhD’ 14 have developed a nanoscale film that can be used to deliver medication, either directly through injections, or by coating implantable medical devices. Photo: Dominick Reuter

Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses.

About one in four older adults suffers from chronic pain. Many of those people take medication, usually as pills. But this is not an ideal way of treating pain: Patients must take medicine frequently, and can suffer side effects, since the contents of pills spread through the bloodstream to the whole body.

Now researchers at MIT have refined a technique that could enable pain medication and other drugs to be released directly to specific parts of the body — and in steady doses over a period of up to 14 months.  The method uses biodegradable, nanoscale “thin films” laden with drug molecules that are absorbed into the body in an incremental process.

“It’s been hard to develop something that releases [medication] for more than a couple of months,” says Paula Hammond, the David H. Koch Professor in Engineering at MIT, and a co-author of a new paper on the advance. “Now we’re looking at a way of creating an extremely thin film or coating that’s very dense with a drug, and yet releases at a constant rate for very long time periods.”

In the paper, published today in the Proceedings of the National Academy of Sciences, the researchers describe the method used in the new drug-delivery system, which significantly exceeds the release duration achieved by most commercial controlled-release biodegradable films.

“You can potentially implant it and release the drug for more than a year without having to go in and do anything about it,” says Bryan Hsu PhD ’14, who helped develop the project as a doctoral student in Hammond’s lab. “You don’t have to go recover it. Normally to get long-term drug release, you need a reservoir or device, something that can hold back the drug. And it’s typically nondegradable. It will release slowly, but it will either sit there and you have this foreign object retained in the body, or you have to go recover it.”

Layer by layer

The paper was co-authored by Hsu, Myoung-Hwan Park of Shamyook University in South Korea, Samantha Hagerman ’14, and Hammond, whose lab is in the Koch Institute for Integrative Cancer Research at MIT.

The research project tackles a difficult problem in localized drug delivery: Any biodegradable mechanism intended to release a drug over a long time period must be sturdy enough to limit hydrolysis, a process by which the body’s water breaks down the bonds in a drug molecule. If too much hydrolysis occurs too quickly, the drug will not remain intact for long periods in the body. Yet the drug-release mechanism needs to be designed such that a drug molecule does, in fact, decompose in steady increments.

To address this, the researchers developed what they call a “layer-by-layer” technique, in which drug molecules are effectively attached to layers of thin-film coating. In this specific case, the researchers used diclofenac, a nonsteroidal anti-inflammatory drug that is often prescribed for osteoarthritis and other pain or inflammatory conditions. They then bound it to thin layers of poly-L-glutamatic acid, which consists of an amino acid the body reabsorbs, and two other organic compounds. The film can be applied onto degradable nanoparticles for injection into local sites or used to coat permanent devices, such as orthopedic implants.

In tests, the research team found that the diclofenac was steadily released over 14 months. Because the effectiveness of pain medication is subjective, they evaluated the efficacy of the method by seeing how well the diclofenac blocked the activity of cyclooxygenase (COX), an enzyme central to inflammation in the body.

“We found that it remains active after being released,” Hsu says, meaning that the new method does not damage the efficacy of the drug. Or, as the paper notes, the layer-by-layer method produced “substantial COX inhibition at a similar level” to pills.

The method also allows the researchers to adjust the quantity of the drug being delivered, essentially by adding more layers of the ultrathin coating.

A viable strategy for many drugs

Hammond and Hsu note that the technique could be used for other kinds of medication; an illness such as tuberculosis, for instance, requires at least six months of drug therapy.

“It’s not only viable for diclofenac,” Hsu says. “This strategy can be applied to a number of drugs.”

Indeed, other researchers who have looked at the paper say the potential medical versatility of the thin-film technique is of considerable interest.

“I find it really intriguing because it’s broadly applicable to a lot of systems,” says Kathryn Uhrich, a professor in the Department of Chemistry and Chemical Biology at Rutgers University, adding that the research is “really a nice piece of work.”

To be sure, in each case, researchers will have to figure out how best to bind the drug molecule in question to a biodegradable thin-film coating. The next steps for the researchers include studies to optimize these properties in different bodily environments and more tests, perhaps with medications for both chronic pain and inflammation.

A major motivation for the work, Hammond notes, is “the whole idea that we might be able to design something using these kinds of approaches that could create an [easier] lifestyle” for people with chronic pain and inflammation.

Hsu and Hammond were involved in all aspects of the project and wrote the paper, while Hagerman and Park helped perform the research, and Park helped analyze the data.

The research described in the paper was supported by funding from the U.S. Army and the U.S. Air Force.

It’s time for an update on graphene, that super material of the future! Scientists have come up with some new ways of making it that are easier and cheaper than ever before.

“Fascination with this material stems from its remarkable physical properties and the potential applications these properties offer for the future. Although scientists knew one atom thick, two-dimensional crystal graphene existed, no-one had worked out how to extract it from graphite.”

 

 

More ….

Charge Your Cell Phone In 5 Seconds

Supercapacitors: They’ll enable you to charge your cell phone in 5 seconds, or an electric car in about a minute. They’re cheap, biodegradable, never wear out and as Trace’ll tell you, could be powering your life sooner than you’d think.

 

 

Still More …

Scientists cook up material 200 times stronger than steel out of soybean oil

Soyben Graphene 8223748-16x9-large“Many production techniques involve the use of intense heat in a vacuum, and expensive ingredients like high-purity metals and explosive compressed gases. Now a team of Australian scientists has detailed how they turned cheap everyday ingredients into graphene under normal air conditions. They said the research, published today in the journal Nature Communications, may open up a new avenue for the low-cost synthesis of the highly sought-after material.” Click on the Link below to read more:

Scientists cook up material 200 times stronger than steel out of soybean oil


1 2 3 4 77
Recent Posts

Categories

Search