Great things from small things

Blog Archive

Home
2018
Archive for: August

Scientists are exploring graphene’s ability to ‘ripple’ into the third dimension.

Image: REUTERS/Nick Carey

Graphene is a modern marvel. It is comprised of a single, two-dimensional layer of carbon, yet is 200 times stronger than steel and more conductive than any other material, according to the University of Manchester, where it was first isolated in 2004.

Graphene also has multiple potential uses, including in biomedical applications such as targeted drug delivery, and for improving the lifespan of smartphone batteries.

Now, a team of researchers at the University of Arkansas has found evidence to suggest graphene could also be used to provide an unlimited supply of clean energy.

The team says its research is based on graphene’s ability to “ripple” into the third dimension, similar to waves moving across the surface of the ocean. This motion, the researchers say, can be harvested into energy.

To study the movement of graphene, lead researcher Paul Thibado and his team laid sheets of the material across a copper grid that acted as a scaffold, which allowed the graphene to move freely.

Thibado says graphene could power biomedical devices such as pacemakers.

Image: Russell Cothren

The researchers used a scanning tunnelling microscope (STM) to observe the movements, finding that narrowing the focus to study individual ripples drew clearer results.

In analysing the data, Thibado observed both small, random fluctuations, known as Brownian motion, and larger, coordinated movements.

A scanning tunnelling microscope.

Image: University of Arkansas

As the atoms on a sheet of graphene vibrate in response to the ambient temperature, these movements invert their curvature, which creates energy, the researchers say.

Harvesting energy

“This is the key to using the motion of 2D materials as a source of harvestable energy,” Thibado says.

“Unlike atoms in a liquid, which move in random directions, atoms connected in a sheet of graphene move together. This means their energy can be collected using existing nanotechnology.”

The pieces of graphene in Thibado’s laboratory measure about 10 microns across (more than 20,000 could fit on the head of a pin). Each fluctuation exhibited by an individual ripple measures only 10 nanometres by 10 nanometres, and could produce 10 picowatts of power, the researchers say.

As a result, each micro-sized membrane has the potential to produce enough energy to power a wristwatch, and would never wear out or need charging.

Sheet of graphene as seen through Thibado’s STM

Image: University of Arkansas

Thibado has created a device, called the Vibration Energy Harvester, that he claims is capable of turning this harvested energy into electricity, as the below video illustrates.

This self-charging power source also has the potential to convert everyday objects into smart devices, as well as powering more sophisticated biomedical devices such as pacemakers, hearing aids and wearable sensors.

Thibado says: “Self-powering enables smart bio-implants, which would profoundly impact society.”

Have you read?

Graphene could soon make your computer 1000 times faster

Can graphene make the world’s water clean?

A new cancer therapy using nanoparticles to deliver a combination therapy direct to cancer cells could be on the horizon, thanks to research from the University of East Anglia.

The new , which has been shown to make breast  and prostate cancer tumours more sensitive to chemotherapy, is now close to entering clinical trials.

And scientists at UEA’s Norwich Medical School have confirmed that it can be mass-produced, making it a viable treatment if proved effective in human trials.

Using  to get drugs directly into a tumour is a growing area of cancer research. The technology developed at UEA is the first of its kind to use nanoparticles to deliver two drugs in combination to target .

The drugs, already approved for clinical use, are an anti-cancer drug called docetaxel, and fingolimod, a multiple sclerosis drug that makes tumours more sensitive to chemotherapy.

Fingolimod cannot currently be used in cancer treatment because it also supresses the immune system, leaving patients with dangerously low levels of .

And while docetaxel is used to treat many cancers, particularly breast, prostate, stomach, head and neck and some lung cancers, its toxicity can also lead to serious side effects for patients whose tumours are chemo-resistant.

Because the nanoparticles developed by the UEA team can deliver the drugs directly to the tumour site, these risks are vastly reduced. In addition, the targeted approach means less of the  is needed to kill off the cancer cells.

“So far nobody has been able to find an effective way of using fingolimod in cancer patients because it’s so toxic in the blood,” explains lead researcher, Dr. Dmitry Pshezhetskiy from the Norwich Medical School at UEA.

“We’ve found a way to use it that solves the toxicity problem, enabling these two drugs to be used in a highly targeted and powerful combination.”

The UEA researchers worked with Precision NanoSystems’ Formulation Solutions Team who used their NanoAssemblr technology to investigate if it was possible to synthesise the different components of the therapy at an industrial scale.

Following successful results on industrial scale production, and a published international patent application, the UEA team is now looking for industrial partners and licensees to move the research towards a phase one clinical trial.

Also included within the nanoparticle package are molecules that will show up on an MRI scan, enabling clinicians to monitor the spread of the particles through the body.

The team has already carried out trials in mice that show the therapy is effective in reducing breast and prostate tumours. These results were published in 2017.

“Significantly, all the components used in the therapy are already cleared for clinical use in Europe and the United States,” says Dr. Pshezhetskiy. “This paves the way for the next stage of the research, where we’ll be preparing the therapy for patient trials.”

“New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth,” by Heba Alshaker, Qi Wang, Shyam Srivats, Yimin Chao, Colin Cooper and Dmitri Pchejetski was published in Breast Cancer Research and Treatment on 10 July 2017.

“Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of ,” by Qi Wang, Heba Alshaker, Torsten Böhler, Shyam Srivats, Yimin Chao, Colin Cooper and Dmitri Pchejetski was published in Scientific Reports on 19 July 2017.

 Explore further: Lipid molecules can be used for cancer growth

More information: Heba Alshaker et al. New FTY720-docetaxel nanoparticle therapy overcomes FTY720-induced lymphopenia and inhibits metastatic breast tumour growth, Breast Cancer Research and Treatment (2017). DOI: 10.1007/s10549-017-4380-8

Qi Wang et al. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer, Scientific Reports (2017). DOI: 10.1038/s41598-017-06142-x

Read more at: https://phys.org/news/2018-08-nanoparticle-therapy-cancer.html#jCp

Northeast Atlantic bathymetry, with Porcupine Bank and the Porcupine Seabight labelled.

A research expedition to a huge underwater canyon off the Irish coast has shed light on a hidden process that sucks the greenhouse gas carbon dioxide (CO2) out of the atmosphere.

Researchers led by a team from the University College Cork (UCC) took an underwater research drone by boat out to Porcupine Bank Canyon — a massive, cliff-walled underwater trench where Ireland’s continental shelf ends — to build a detailed map of its boundaries and interior. Along the way, the researchers reported in a statement, they noted a process at the edge of the canyon that pulls CO2 from the atmosphere and buries it deep under the sea.

ColdWaterCoral_largeAll around the rim of the canyon live cold-water corals, which thrive on dead plankton raining down from the ocean surface. Those tiny, surface-dwelling plankton build their bodies out of carbon extracted from CO2 in the air. Then, when they die, the coral on the seafloor consume them and build their bodies out of the same carbon. Over time, as the coral die and the cliff faces shift and crumble, which sends the coral   falling deep into the canyon. There, the carbon pretty much stays put for long periods. [ In Photos: ROV Explores Deep-Sea Marianas Trench

There’s evidence that a lot of carbon is moving this way; the researchers said they found “significant” dead coral buildup at the canyon bottom.

This process doesn’t move nearly enough carbon dioxide to prevent climate change, the researchers said. But it does shed light on yet another mechanism that keeps the planet’s CO2 levels regulated when human industry doesn’t interfere.

“Increasing CO2 concentrations in our atmosphere are causing our extreme weather,” Andy Wheeler, a UCC geoscientist and one of the researchers on the expedition, said in the statement. “Oceans absorb this CO2 and canyons are a rapid route for pumping it into the deep ocean where it is safely stored away.”

The mapping expedition covered an area about the size of Chicago and revealed places where the canyon has moved and shifted significantly in the past.

“We took cores with the ROV, and the sediments reveal that although the canyon is quiet now, periodically it is a violent place where the seabed gets ripped up and eroded,” Wheeler said.

The expedition will return to shore today (Aug. 10).

Related

Will underwater drones bring a sea change to naval – and nuclear – warfare? 

maratime-unmanned-500

 


Recent Posts

Categories

Search

Nano Enabled Super Capacitors and Batteries for the Future of Energy Storage

Follow Us on Twitter @Genesisnanotech


Could not authenticate you.