Great things from small things

Blog Archive

Home
Nano- Bio

1-Vacinations 3635082184Saarbruecken, Germany – There could soon be an alternative to the classic vaccination injection, according to German scientists.

Researchers at the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) and the Helmholtz Centre for Infection Research in Braunschweig (HZI) are working on a project which could allow vaccinations to be administered via a skin cream.

 

The “taxis,” as Claud-Michael Lehr, director of the drug delivery department at HIPS, puts it, are biologically degradable nanoparticles.

The tiny transporters attach themselves to the hair follicles and so transmit the vaccination into the body, according to him.

1-Vacinations 3635082184

“The skin is not broken,” says Lehr. “Ideally in the future you could simply put on some skin cream and you would be vaccinated.”

Such creams would be significantly cheaper to produce and simpler to administer, advantages which would be especially important for developing countries.

According to Ralph von Kiedrowski, regional director of the Association of German Dermatologists in Rheinland Palatinate, it is a method which is certainly workable.

There are already vaccinations which are absorbed via the lining of the mouth, he says.

Another advantage of administering drugs via a cream would be that it could be used for people who are afraid of needles, he says.

But the nanoparticles would have to consist of substances that would not cause an unintentioned reaction by the body’s immune system. And the packaging would have to be constructed in a way that the correct amount of the vaccination was used.

“It all depends on the correct dosage,” said Rolf Hoemke, spokesman for the Association of Research-Based Pharmaceutical Companies in Berlin. “But it must be possible to find a way of doing that with a cream.”

There are always thoughts of developing new methods of giving vaccinations without injections, he added, and a cream would be realistic.

The cream developed by the Helmholtz researchers is still in the pre-clinical phase, meaning it has only been tested in the laboratory and on animals.

A clinical study, which would involve people, is not being planned due to a lack of sponsors, says Lehr.

He believes that traditional vaccinations using injections have various disadvantages.

“It’s very laborious and expensive to produce such vaccinations and you need trained staff to administer it,” he explains.

Since the nanoparticles do not deliver enough of the vaccination to the body in order to create the desired effect on its immune system, the researchers have also funnelled so-called adjuvants through the skin via the transporters.

These chemical additives strengthen the immune response and are also used in traditional vaccines, according to Lehr.

The scientist believes that creams could also be used to treat people who suffer from allergies. – Sapa-dpa

01 Sep 2014

Small and Mighty

3D Printing dots-2Scientists from research institutions around the world are beginning to master the science of nanotechnology.

Nanotechnology has the potential to radically improve our everyday lives – whether by revolutionising the way we receive life-saving medicines, or by dramatically increasing the speed at which a tumour can be treated.

 

The origins of nanotechnology, or nanoscience, date back to 1959 when US physicist Richard Feynman gave a talk to the American Physical Society entitled: ’There’s Plenty of Room at the Bottom’.

Though the term ’nanotechnology’ was not coined until a decade after Feynman’s talk, it was the driving force behind much of his work.

Now, more than half a century later, nanotechnology is widely considered the disruptive science that will forcibly eradicate previous, less effective technologies.

In terms of size, a single sheet of newspaper measures roughly 100,000 nanometres thick.

What scientists stress as equally important as its size, however, is the reactive nature of a nanomaterials’ surface.

Nanomaterials such as graphene possess outstanding mechanical, thermal and electrical properties, and boast a density half that of aluminium – making it useful in the construction of some sports equipment (see image).

“You can send electrical signals using graphene far faster than you can with other materials

Senior lecturer David Carey

Senior lecturer in electronic engineering at the University of Surrey David Carey says: “Graphene has mechanical properties that exceed Young’s Modulus which exceeds almost all known materials, making it extremely light.”

For Carey, at the university’s new graphene centre, which forms part of its wider Advanced Technology Institute (ATI), there is a strong interest in the characterisation of high-frequency materials.

“You can send electrical signals using graphene far faster than you can with other materials, and that is why graphene within high-speed electronic equipment is becoming increasingly sought after,” Carey says.

“A really good example of that is within antennas. If you make a mobile phone antenna smaller and smaller, the electrical losses get bigger and bigger. But if you use graphene, those losses do not happen.”

Perhaps most fascinating, however, is the potential to use nanomaterials such as graphene within advanced drug delivery, as an aid to nanomedicine.

Carey says that patients often get extremely sick from chemotherapy drugs because they are powerful medicines that spread throughout the body, rather than being constrained to a more localised area.

“If you can coat your vessel, such as a carbon nanotube, so those drugs only go to a tumour, then the patient has to consume far less medicine and therefore they don’t have such bad side-effects,” Carey says.

“Through this method, patients [can] recover far better and far more quickly.”

For Johnathan Aylott, associate professor in analytical bioscience at the Nottingham Nanotechnology & Nanoscience Centre (NNNC), however, nanomedicine technologies can sometimes fail as they cannot effectively manipulate the intelligent defence mechanisms inherent within our cellular structures.

“If you have a nanoparticle entering a cell, the cell works well to process it and get it contained and out the other side, which is why people talk about [how effective] nanotechnology can be in the delivery of drugs,” Aylott says.

“There are very few good examples of this technology currently on the market, however.”

To combat this, Aylott says researchers are engineering nanoparticles that effectively disguise themselves.

“With stealth nanoparticles, the idea is to trick the body into not realising what this ’thing’ is so it can deliver the drug effectively,” Aylott says.

Though Aylott admits there is huge potential for the use of stealth nanoparticles, knowing how these particles are processed and trafficked in the body unfortunately remains a barrier.

Yet, in developing our understanding of the human body even further, scientists are attempting to reimagine relatively modern processes using advances in nanoscience.

Professor Nicholas Long of Imperial College London’s (ICL) department of chemistry says his research into self-assembling nanoparticles centres on radically increasing the sensitivity of the contrast agents used in imaging applications.

“As long as we can persuade enough people that we have a good idea, we get to push the boundaries of what’s out there

NNNC associate professor Johnathan Aylott

“MRI (Magnetic Resonance Imaging) is brilliant in terms of showing very clearly defined images, but you need to use a lot of contrast agent to give you enough signal, and some of the commonly used agents are very toxic,” Long says.

To counter this, Long, alongside researchers at ICL, has developed a protein-coated iron-oxide nanoparticle designed to aid tumour diagnosis.

ARK nctr

“Iron-oxide nanoparticles are attractive because they have some inherent magnetic behaviour. And, as far as we know, they are benign, as opposed to other contrast agents,” he says.

Long says when using iron-oxide nanoparticles, a more powerful signal and a clearer MRI image of the tumours his team attempted to scan was produced.

Looking ahead, the main objective of Long’s research is to adapt the technology for use in human clinical trials.

“That’s the big goal for us. We need to do further animal work before we can move to human trials, but assuming they work well, we can apply for further funding [and start testing in humans],” Long says.

In an ideal world, Long says this treatment could be available within 10 years, depending on the outcome of more rigorous testing.

Fortunately, our understanding and acceptance of nanotechnology is gaining pace, and in the last decade especially, investment in the nano-sciences has benefited from some major monetary boosts.

“As long as we can persuade enough people that we have a good idea, we get to push the boundaries of what’s out there,” says Aylott.

Though nanotechnology deals in the realms of the almost unfathomably small, and can often only make incremental progress, given the right circumstances, and continued support, its potential to radicalise our everyday lives certainly seems mighty.

immunecellsg(Phys.org) —Scientists at Yale University have developed a novel cancer immunotherapy that rapidly grows and enhances a patient’s immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient’s blood to boost the immune response or fight cancer.

 

 

As reported Aug. 3 in Nature Nanotechnology, the researchers used bundled carbon nanotubes (CNTs) to incubate cytotoxic T cells, a type of white blood cell that is important to . According to the researchers, the topography of the CNTs enhances interactions between cells and long-term cultures, providing a fast and effective stimulation of the cytotoxic T cells that are important for eradicating cancer.

The researchers modified the CNTs by chemically binding them to polymer nanoparticles that held Interleukin-2, a cell signaling protein that encourages T cell growth and proliferation. Additionally, in order to mimic the body’s methods for stimulating cytotoxic T cell proliferation, the scientists seeded the surfaces of the CNTs with molecules that signaled which of the patient’s cells were foreign or toxic and should be attacked.

immunecellsg

A high-resolution, scanning electron microscope image of the carbon nanotube-polymer composite. The bundled CNTs appear as spaghetti-like structures.

Over the span of 14 days, the number of T cells cultured on the composite nanosystem expanded by a factor of 200, according to the researchers. Also, the method required 1,000 times less Interleukin-2 than conventional culture conditions. A magnet was used to separate the CNT-polymer composites from the T cells prior to injection.

“In repressing the body’s , tumors are like a castle with a moat around it,” says Tarek Fahmy, an associate professor of biomedical engineering and the study’s principal investigator. “Our method recruits significantly more cells to the battle and arms them to become superkillers.”

According to Fahmy, previous procedures for boosting antigen-specific T cells required exposing the patient’s harvested to other cells that stimulate activation and proliferation, a costly procedure that risks an adverse reaction to foreign cells. The Yale team’s use of magnetic CNT-polymer composites eliminates that risk by using simple, inexpensive magnets.

“Modulatory nanotechnologies can present unique opportunities for promising new therapies such as T cell immunotherapy,” says Tarek Fadel, lead author of the research and a Yale postdoc who is currently a staff scientist with the National Nanotechnology Coordination Office. “Engineers are progressing toward the design of the next generations of nanomaterials, allowing for further breakthrough in many fields, including cancer research.”

Explore further: New ‘doping’ method improves properties of carbon nanotubes

Ebola 038d30d5-ae4d-4cbe-bfd8-5e73877e269d-1407938180974With the Ebola virus death toll now topping 1000 and even the much publicized experimental treatment ZMapp failing to save the life of a Spanish missionary priest who was treated with it, it is clear that scientists need to explore new ways of fighting the deadly disease. For researchers at Northeastern University in Boston, one possibility may be using nanotechnology.

“It has been very hard to develop a vaccine or treatment for Ebola or similar viruses because they mutate so quickly,” said Thomas Webster, the chair of Northeastern’s chemical engineering department, in a press release. “In nanotechnology we turned our attention to developing nanoparticles that could be attached chemically to the viruses and stop them from spreading.”

Webster, along with many researchers in the nanotechnology community, have been trying to use gold nanoparticles, in combination with near-infrared light, to kill cancer cells with heat. The hope is that the same approach could be used to kill the Ebola virus.

Ebola 038d30d5-ae4d-4cbe-bfd8-5e73877e269d-1407938180974

His team is currently developing methods to make cancer cells attract gold nanoparticles. Infrared light them heats up the particles, destroying the cancer cells. Healthy cells wouldn’t attract the nanoparticles and would not be affected. To magnify the heating effect, Webster increased the surface area of the gold nanoparticles by shaping them as stars. He dubbed them gold nanostars.

“The star has a lot more surface area, so it can heat up much faster than a sphere can,” Webster said in the release. “And that greater surface area allows it to attack more viruses once they adsorb to the particles.”

At his lab, he and his students are testing the nanostars on syn­thetic analogs that mimic viruses’ struc­tures. He said they’ve “realized the potential,” and although he’s hopeful, he doesn’t want to create false expectations, noting that using nanotechnology to fight the Ebola virus is still in its early days.

“There is obviously such a huge need right now for ways to treat Ebola and other viruses, and it’s up to us to study and look at new and creative ways that traditional medicine really can’t.”

Learn More

Ebola virus cancer gold nanoparticles infrared light nanomaterials nanoparticles

U of T Cancer Molecule id36877Researchers from The University of Texas at Austin and five other institutions have created a molecule that can cause cancer cells to self-destruct by ferrying sodium and chloride ions into the cancer cells.
These synthetic ion transporters, described this week in the journal Nature Chemistry (“Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells”), confirm a two-decades-old hypothesis that could point the way to new anticancer drugs while also benefitting patients with cystic fibrosis.
Synthetic Ion Transporters
Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells.
Synthetic ion transporters have been created before, but this is the first time researchers have shown them working in a real biological system where transported ions demonstrably cause cells to self-destruct.
Cells in the human body work hard to maintain a stable concentration of ions inside their cell membranes. Disruption of this delicate balance can trigger cells to go through apoptosis, known as programmed cell death, a mechanism the body uses to rid itself of damaged or dangerous cells.
One way of destroying cancer cells would be to trigger this innate self-destruct sequence by skewing the ion balance in cells. Unfortunately, when a cell becomes cancerous, it changes the way it transports ions across its cell membrane in a way that blocks apoptosis.
Almost two decades ago, a natural substance called prodigiosin was discovered that acted as a natural ion transporter and has an anticancer effect.
Since then, it has been a “chemist’s dream,” said Jonathan Sessler, professor in The University of Texas at Austin’s College of Natural Sciences and co-author of the study, to find “synthetic transporters that might be able to do exactly the same job, but better, and also work for treating diseases such as cystic fibrosis where chloride channels don’t work.”
Sessler and his collaborators, led by professors Injae Shin of Yonsei University and Philip A. Gale of the University of Southampton and King Abdulaziz University, were able to bring this dream to fruition.
The University of Texas members of the team created a synthetic ion transporter that binds to chloride ions. The molecule works by essentially surrounding the chloride ion in an organic blanket, allowing the ion to dissolve in the cell’s membrane, which is composed largely of lipids, or fats. The researchers found that the transporter tends to use the sodium channels that naturally occur in the cell’s membrane, bringing sodium ions along for the ride.
Gale and his team found that the ion transporters were effective in a model system using artificial lipid membranes.
Shin and his working group were then able to show that these molecules promote cell death in cultured human cancer cells. One of the key findings was that the cancer cell’s ion concentrations changed before apoptosis was triggered, rather than as a side effect of the cell’s death.
“We have thus closed the loop and shown that this mechanism of chloride influx into the cell by a synthetic transporter does indeed trigger apoptosis,” said Sessler. “This is exciting because it points the way towards a new approach to anticancer drug development.”
Sessler noted that right now, their synthetic molecule triggers programmed cell death in both cancerous and healthy cells. To be useful in treating cancer, a version of a chloride anion transporter will have to be developed that binds only to cancerous cells. This could be done by linking the transporter in question to a site-directing molecule, such as the texaphyrin molecules that Sessler’s lab has previously synthesized.
The results were a culmination of many years of work across three continents and six universities.
“We have demonstrated that this mechanism is viable, that this idea that’s been around for over two decades is scientifically valid, and that’s exciting,” said Sessler. “We were able to show sodium is really going in, chloride is really going in. There is now, I think, very little ambiguity as to the validity of this two-decades-old hypothesis.”
The next step for the researchers will be to take the synthetic ion transporters and test them in animal models.
Source: University of Texas at Austin

graphene-oxide-turning-into-liquid-crystal-dropletsA chance discovery about the ‘wonder material’ graphene – already exciting scientists because of its potential uses in electronics, energy storage and energy generation – takes it a step closer to being used in medicine and human health.

 

 

Researchers from Monash University have discovered that graphene oxide sheets can change structure to become liquid crystal droplets spontaneously and without any specialist equipment.

With graphene droplets now easy to produce, researchers say this opens up possibilities for its use in and disease detection.

The findings, published in the journal ChemComm, build on existing knowledge about graphene. One of the thinnest and strongest materials known to man, graphene is a 2D sheet of carbon just one atom thick. With a ‘honeycomb’ structure the ‘wonder material’ is 100 times stronger than steel, highly conductive and flexible.

graphene-oxide-turning-into-liquid-crystal-droplets

 

Dr Mainak Majumder from the Faculty of Engineering said because graphene droplets change their structure in response to the presence of an external magnetic field, it could be used for controlled drug release applications.

“Drug delivery systems tend to use magnetic particles which are very effective but they can’t always be used because these particles can be toxic in certain physiological conditions,” Dr Majumder said.

“In contrast, graphene doesn’t contain any magnetic properties. This combined with the fact that we have proved it can be changed into liquid crystal simply and cheaply, strengthens the prospect that it may one day be used for a new kind of drug delivery system.”

Usually atomisers and mechanical equipment are needed to change graphene into a spherical form. In this case all the team did was to put the graphene sheets in a solution to process it for industrial use. Under certain PH conditions they found that graphene behaves like a polymer – changing shape by itself.

First author of the paper, Ms Rachel Tkacz from the Faculty of Engineering, said the surprise discovery happened during routine tests.

“To be able to spontaneously change the structure of graphene from single sheets to a spherical assembly is hugely significant. No one thought that was possible. We’ve proved it is,” Ms Tkacz said.

“Now we know that graphene-based assemblies can spontaneously change shape under certain conditions, we can apply this knowledge to see if it changes when exposed to toxins, potentially paving the way for new methods of disease detection as well.”

Commonly used by jewelers, the team used an advanced version of a polarised light microscope based at the Marine Biological Laboratory, USA, to detect minute changes to grapheme.

Dr Majumder said collaborating with researchers internationally and accessing some of the most sophisticated equipment in the world, was instrumental to the breakthrough discovery.

“We used microscopes similar to the ones jewelers use to see the clarity of precious gems. The only difference is the ones we used are much more precise due to a sophisticated system of hardware and software. This provides us with crucial information about the organisation of graphene sheets, enabling us to recognise these unique structures,” Dr Majumder said.

Dr Majumder and his team are working with graphite industry partner, Strategic Energy Resources Ltd and an expert in polarized light imaging, Dr. Rudolf Oldenbourg from the Marine Biological Laboratory, USA, to explore how this work can be translated and commercialised.

Mr Mark Muzzin, CEO of Strategic Energy Resources Ltd said the collaboration with Monash was progressing well.

“We are so pleased to be associated with Dr Majumder’s team at Monash University. The progress they have made with our joint project has been astonishing,” he said.

The research was made possible by an ARC Linkage grant awarded to Strategic Energy Resources Ltd and Monash University and was the first linkage grant for research in Australia.

Explore further: Making graphene in your kitchen

Read more at: http://phys.org/news/2014-08-discovery-graphene-health.html#jCp

 

 

 

 

 

 

 

 

Applications of Nanomaterials Chart Picture1

SUBCOMMITTE EXAMINES BREAKTHROUGH NANOTECHNOLOGY OPPORTUNITIES FOR AMERICA

July 29, 2014

WASHINGTON, DCThe Subcommittee on Commerce, Manufacturing, and Trade, chaired by Rep. Lee Terry (R-NE), today held a hearing on “Nanotechnology: Understanding How Small Solutions Drive Big Innovation.” Nanotechnology is science, engineering, and technology conducted at the nanoscale, which is approximately 1 to 100 nanometers (one nanometer is a billionth of a meter). This technology brings great opportunities to advance a broad range of industries, bolster our U.S. economy, and create new manufacturing jobs. Members heard from several nanotech industry leaders about the current state of nanotechnology and the direction that it is headed.UNIVERSITY OF WATERLOO - New $5 million lab

“Just as electricity, telecommunications, and the combustion engine fundamentally altered American economics in the ‘second industrial revolution,’ nanotechnology is poised to drive the next surge of economic growth across all sectors,” said Chairman Terry.

 

 

Applications of Nanomaterials Chart Picture1

Dr. Christian Binek, Associate Professor at the University of Nebraska-Lincoln, explained the potential of nanotechnology to transform a range of industries, stating, “Virtually all of the national and global challenges can at least in part be addressed by advances in nanotechnology. Although the boundary between science and fiction is blurry, it appears reasonable to predict that the transformative power of nanotechnology can rival the industrial revolution. Nanotechnology is expected to make major contributions in fields such as; information technology, medical applications, energy, water supply with strong correlation to the energy problem, smart materials, and manufacturing. It is perhaps one of the major transformative powers of nanotechnology that many of these traditionally separated fields will merge.”

Dr. James M. Tour at the Smalley Institute for Nanoscale Science and Technology at Rice University encouraged steps to help the U.S better compete with markets abroad. “The situation has become untenable. Not only are our best and brightest international students returning to their home countries upon graduation, taking our advanced technology expertise with them, but our top professors also are moving abroad in order to keep their programs funded,” said Tour. “This is an issue for Congress to explore further, working with industry, tax experts, and universities to design an effective incentive structure that will increase industry support for research and development – especially as it relates to nanotechnology. This is a win-win for all parties.”

** Follow Our Nano-Blog: “Great Things from Small Things” – Just Click on the ‘Follow Blog”

** Follow us on Twitter at: @Genesisnanotech1x2 logo sm

** ‘Like Us’ on Facebook

Professor Milan Mrksich of Northwestern University discussed the economic opportunities of nanotechnology, and obstacles to realizing these benefits. He explained, “Nanotechnology is a broad-based field that, unlike traditional disciplines, engages the entire scientific and engineering enterprise and that promises new technologies across these fields. … Current challenges to realizing the broader economic promise of the nanotechnology industry include the development of strategies to ensure the continued investment in fundamental research, to increase the fraction of these discoveries that are translated to technology companies, to have effective regulations on nanomaterials, to efficiently process and protect intellectual property to ensure that within the global landscape, the United States remains the leader in realizing the economic benefits of the nanotechnology industry.”

James Phillips, Chairman & CEO at NanoMech, Inc., added, “It’s time for America to lead. … We must capitalize immediately on our great University system, our National Labs, and tremendous agencies like the National Science Foundation, to be sure this unique and best in class innovation ecosystem, is organized in a way that promotes nanotechnology, tech transfer and commercialization in dramatic and laser focused ways so that we capture the best ideas into patents quickly, that are easily transferred into our capitalistic economy so that our nation’s best ideas and inventions are never left stranded, but instead accelerated to market at the speed of innovation so that we build good jobs and improve the quality of life and security for our citizens faster and better than any other country on our planet.”

Chairman Terry concluded, “Nanotech is a true science race between the nations, and we should be encouraging the transition from research breakthroughs to commercial development. I believe the U.S. should excel in this area.”

– See more at: http://energycommerce.house.gov/press-release/subcommittee-examines-breakthrough-nanotechnology-opportunities-america#sthash.YnSzFU10.dpuf

R and D 4 CancerGlowThe best way to cure most cases of cancer is to surgically remove the tumor. The Achilles heel of this approach, however, is that the surgeon may fail to extract the entire tumor, leading to a local recurrence.

 

 

With a new technique, researchers at the University of Pennsylvania have established a new strategy to help surgeons see the entire tumor in the patient, increasing the likelihood of a positive outcome. This approach relies on an injectable dye that accumulates in cancerous tissues much more so than normal tissues. When the surgeon shines an infrared light on the cancer, it glows, allowing the surgeon to remove the entire malignancy.

“Surgeons have had two things that tell where a cancer is during surgery: their eyes and their hands,” said David Holt, first author on the study and professor of surgery in Penn’s School of Veterinary Medicine. “This technique is offering surgeons another tool, to light tumors up during surgery.”

Holt collaborated with a team from Penn’s Perelman School of Medicine led by Sunil Singhal, an assistant professor of surgery. Their paper appears in the journal PLOS ONE.

Between 20 and 50 percent of cancer patients who undergo surgery end up experiencing a local recurrence of their cancer, indicating that the surgeon failed to extract all of the diseased tissue from the site. Identifying the margins of a tumor can be difficult to do during a procedure, and typically surgeons have had to do this by simply looking at the tumor and feeling for differences with their fingers.

R and D 4 CancerGlow

Seeking an alternative, Holt, Singhal and colleagues turned to near-infrared, or NIR, imaging. They chose to test the only Food and Drug Administration-approved contrast agent for NIR, a dye called indocyanine green, or ICG, that fluoresces a bright green under NIR light. ICG concentrates in tumor tissue more than normal tissue because the blood vessels of tumors have so-called “leaky” walls from growing quickly.

“Since 1958 when ICG was initially FDA approved, it has been used to examine tissue perfusion and clearance studies,” Singhal said. “However, our group has been experimenting with new strategies to use ICG to solve a classic problem in surgical oncology: preventing local recurrences. Our work uses an old dye in a new way.”

To see if visualizing ICG under NIR could help them define cancerous from non-cancerous tissues, the Penn-led team first tested the approach in mice. They administered ICG to mice with a type of lung cancer and found that they could use NIR to distinguish tumors from normal lung tissue as early as 15 days after the mice acquired cancer. These tumors were visible to the human eye by 24 days.

Next the researchers evaluated the technique in eight client-owned dogs, of various breeds and sizes, that had naturally occurring lung cancer and were brought to Penn Vet’s Ryan Veterinary Hospital for surgery. They received ICG intravenously a day before surgery, then surgeons used NIR during the procedure to try to visualize the tumor and distinguish it from normal tissue.

“It worked,” Holt said, the tumors fluorescing clearly enough to permit the surgeon to rapidly distinguish the cancer during surgery. “And because it worked in a spontaneous large animal model, we were able to get approval to start trying it in people.”

A human clinical trial was the final step. Five patients with cancer in their lungs or chest participated in the pilot study at the Hospital of the University of Pennsylvania. Each received an injection of ICG prior to surgery. During the procedure, surgeons removed the tumors, which were then inspected using NIR imaging and biopsied.

All of the tumors strongly fluoresced under the NIR light, confirming that the technique worked in human cancers.

In four of the patients, the surgeon could easily tell tumor from non-tumor by sight and by feel. In a fifth patient, however, though a CT and PET scan indicated that the tumor was a solitary mass, NIR imaging revealed glowing areas in what were thought to be healthy parts of the lung.

“It turns out he had diffuse microscopic cancer in multiple areas of the lung,” Holt said. “We might have otherwise called this Stage I, local disease, and the cancer would have progressed. But because of the imaging and subsequent biospy, he underwent chemotherapy and survived.”

Some other research teams have begun investigating NIR for other applications in cancer surgery, but this is the first time a group has taken the approach from a mouse model to a large animal model of spontaneous disease and all the way to human clinical trials.

One drawback of the technique is that ICG also absorbs into inflamed tissue. So in some patients that had inflamed tissues around their tumors, it was difficult or impossible to tell apart cancer from from inflamed tissue. The Penn researchers are working to identify an alternative targeted contrast agent that is specific to a tumor cell marker to avoid this problem, Holt said.

In addition to Holt and Singhal, the authors on the paper included Penn Medicine’s Olugbenga Okusanya, Ryan Judy, Ollin Venegas, Jack Jiang, Elizabeth DeJesus, Evgeniy Eruslanov, Jon Quatromoni, Pratik Bhojnagarwala, Charuhas Deshpande and Steven Albelda and Emory University’s Shuming Nie.

The work was supported by the American Surgical Association and the National Institutes of Health.

Intraoperative Near-Infrared Imaging Can Distinguish Cancer from Normal Tissue but Not Inflammation

Source: Univ. of Pennsylvania

Organ on a chip organx250The Wyss Institute for Biologically Inspired Engineering at Harvard University announced that its human “Organs-on-Chips” technology will be commercialized by a newly formed private company to accelerate development of pharmaceutical, chemical, cosmetic and personalized medicine products. The announcement follows a worldwide license agreement between Harvard’s Office of Technology Development (OTD) and the start-up Emulate Inc., relating to the use of the Institute’s automated human Organs-on-Chips platform.

“This is a big win towards achieving our Institute’s mission of transforming medicine and the environment by developing breakthrough technologies and facilitating their translation from the benchtop to the marketplace,” said Wyss Institute Founding Director Don Ingber, MD, PhD and leader of the Wyss Institute’s Organs-on-Chips effort.

Created with microchip manufacturing methods, an Organ-on-a-Chip is a cell culture device, the size of a computer memory stick, that contains hollow channels lined by living cells and tissues that mimic organ-level physiology. These devices produce levels of tissue and organ functionality not possible with conventional culture systems, while permitting real-time analysis of biochemical, genetic and metabolic activities within individual cells.

The Wyss Institute team also has developed an instrument to automate the Organs-on-Chips, and to link them together by flowing medium that mimics blood to create a “Human-Body-on-Chips” and better replicate whole body-level responses. This automated human Organ-on-Chip platform could represent an important step towards more predictive and useful measures of the efficacy and safety of potential new drugs, chemicals and cosmetics, while reducing the need for traditional animal testing. Human Organs-on-Chips lined by patient-derived stem cells also could potentially provide a way to develop personalized therapies in the future.

Organ on a chip organx250

The Wyss Institute’s human “Organs-on-Chips” team has used the lung-on-a-chip shown here to study drug toxicity and potential new therapies. The technology will be commercialized to accelerate development of pharmaceutical, chemical, cosmetic and personalized medicine products. Image: Harvard’s Wyss Institute

The technology’s rapid development from demonstration of the first functional prototypes to multiple human Organs-on-Chips that can be integrated on a common instrument platform also speaks to the Institute’s ability to translate academic innovation into commercially valuable technologies in a big and meaningful way.

“We took a game-changing advance in microengineering made in our academic lab, and in just a handful of years, turned it into a technology that is now poised to have a major impact on society. The Wyss Institute is the only place this could happen,” added Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children’s Hospital, and Professor of Bioengineering at the Harvard School of Engineering and Applied Sciences.

Since their 2010 publication on the human breathing lung-on-a-chip in Science, and with grant support from the Defense Advanced Research Projects Agency (DARPA), Food and Drug Administration (FDA) and National Institutes of Health (NIH), Ingber and his team have developed more than ten different Organs-on-Chip models, including chips that mimic liver, gut, kidney and bone marrow. The DARPA effort also has supported the engineering of the instrument that automates chip operations and fluidically links the different organs-on-chips together to more closely mimic whole body physiology, while permitting high-resolution imaging and molecular analysis.

The transition of the Organs-on-Chips technology to a startup was enabled by the Wyss Institute’s unique technology translation model, which takes lead high-value technologies that emerge from Wyss faculty efforts, and de-risks them both technically and commercially to increase their likelihood for commercial success.

Through numerous collaborations with industry, the Wyss Institute team refined their technology, and validated it for market need and impact by testing existing drugs and modeling various human diseases on-chip. And with an eye towards creating a technology that can be mass-manufactured cost effectively outside the lab, they formed industrial partnerships to achieve this goal and increase the likelihood of success in the marketplace.

Mature Institute projects are led by teams that include the lead faculty member, a technical champion with industrial experience on the Institute’s Advanced Technology Team, and a Wyss business development lead, working closely with Harvard OTD.

The Organs-on-Chips project leaders included Don Ingber, Geraldine Hamilton, PhD, Lead Senior Scientist on the Wyss Institute Biomimetics Microsystems Platform, and James Coon, a Wyss Institute Entrepreneur-in-Residence. Hamilton and Coon will be moving to take senior leadership positions at Emulate, along with multiple members of the research team, smoothing the transition from academia to industry.

“The ‘Organs-on-Chips’ story is a great example of how the Wyss Institute brings researchers with industrial experience into the heart of our research community and effectively bridges academia and industry,” said Alan Garber, Provost of Harvard University and Chair of the Institute’s Board of Directors.

Source: Harvard Univ.

NIST Spin Rods 14CNST004_nanorod_LR_1Vibrate a solution of rod-shaped metal nanoparticles in water with ultrasound and they’ll spin around their long axes like tiny drill bits. Why? No one yet knows exactly. But researchers at the National Institute of Standards and Technology (NIST) have clocked their speed—and it’s fast. At up to 150,000 revolutions per minute, these nanomotors rotate 10 times faster than any nanoscale object submerged in liquid ever reported.

 

The discovery of this dizzying rate has opened up the possibility that they could be used not only for moving around inside the body—the impetus for the research—but also for high-speed machining and mixing.

Scientists have been studying how to make nanomotors move around in liquids for the past several years. A group at Penn State looking for a biologically friendly way to propel nanomotors first observed that metal nanorods were moving and rotating in response to ultrasound in 2012. Another group at the University of California San Diego then directed the metal rods’ forward motion using a magnetic field. The Penn State group then demonstrated that these nanomotors could be propelled inside of a cancer cell.

But no one knew why or how fast the nanomotors were spinning. The latter being a measurement problem, researchers at NIST worked with the Penn State group to solve it.

“If nanomotors are to be used in a biological environment, then it is important to understand how they interact with the liquid and objects around them,” says NIST project leader Samuel Stavis. “We used nanoparticles to trace the flow of water around the nanomotors, and we used that measurement to infer their rate of rotation. We found that the nanomotors were spinning surprisingly rapidly.”

14CNST004_nanorod_LR
Inference of nanorod rotation: A nanoparticle traces the microvortical flow around a nanorod rotating at up to 150,000 RPM propelled by ultrasound.
Credit: Balk/NIST
View hi-resolution image

The NIST team clocked the nanomotors’ rotation by mixing the 2-micrometer-long, 300-nanometer-wide gold rods with 400-nanometer-diameter polystyrene beads in water and putting them between glass and silicon plates with a speaker-type shaker beneath. They then vibrated the shaker at an ultrasonic tone of 3 megahertz—much too high for you or your dog to hear—and watched the motors and beads move.

As the motors rotate in water, they create a vortex around them. Beads that get close get swept up by the vortex and swirl around the rods. By measuring how far the beads are from the rods and how fast they move, the group was able to work out how quickly the motors were spinning—with an important caveat.

“The size of the nanorods is important in our measurements” says NIST physicist Andrew Balk. “We found that even small variations in the rod’s dimensions cause large measurement uncertainties, so they need to be fabricated as uniformly as possible for future studies and applications.”

According to the researchers, the speed of the nanomotors’ rotation seems to be independent of their forward motion. Being able to control the “speed and feed” of the nanomotors independently would open up the possibility that they could be used as rotary tools for machining and mixing.

Future avenues of research include trying to discover exactly why the motors rotate and how the vortex around the rods affects their interactions with each other.

*A.L. Balk, L.O. Mair, P.P. Mathai, P.N. Patrone, W.Wang, S. Ahmed, T.E. Mallouk, J.A. Liddle and S.M. Stavis. Kilohertz rotation of nanorods propelled by ultrasound, traced by microvortex advection of nanoparticles. ACS Nano, Articles ASAP (As Soon As Publishable) Publication Date (Web): July 14, 2014

1 2 3 4 8
Recent Posts

Categories

Search

Nano Enabled Super Capacitors and Batteries for the Future of Energy Storage

Follow Us on Twitter @Genesisnanotech


Could not authenticate you.