Great things from small things

391f84fd-6427-4c06-9fb4-3d3c8a433f41

“A New Energy Storage Company Comes of Age.” 

tenka-logo-1-0916-picture1

Read the ‘Tenka Story’ and Watch the Video after our story on:

Defining Nanotechnology

define-nano-0916-optimized-nanotech

Can you define nanotechnology? Although the term has circulated since the 1980s, there are still several misconceptions about the field and what it entails.

 

Perhaps that’s because how we define nanotechnology has evolved over the years and there’s still no widespread agreement.

 

In fact, the inaugural issue of Nature Nanotechnology, published in 2006, includeda feature in which numerous researchers attempted to map the subject’s parameters. One participant even predicted that the term would fall out of use within the decade!

But here we are, ten years later—and the term remains very much in play. As for the question of how to define nanotechnology? That’s still up for debate too.

 

A Standard Definition

Researchers can agree on some things: nanotechnology involves structures, devices or materials that are both manmade and very, very small. (“Great Things from Small Things”) But that’s where the consensus ends.

Most experts consider ‘very, very small’ to in this case refer to materials shorter than 100 nanometers (nm) in length. For context, a single strand of human hair is 80,000 nm wide.

Some scientists, however, find such a hard and fast definition unhelpful. They argue that a strict one to 100 nm range excludes several materials, particularly pharmaceutical ones, that rightfully fall within the nanotechnology realm. These materials still have special properties that result specifically from their nanoscale—such as increased magnetism or conductivity.

In fact, that’s the key to defining nanotechnology. Matter takes on different properties at nanoscale than it does in its other forms or sizes—and that allows researchers to manipulate or engineer it in unprecedented ways.

When it comes to a working definition, the American National Nanotechnology Initiative says it best. According to their website,“Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions betweenapproximately 1 and 100 nanometers, where unique phenomena enable novel applications.”

 

A Big Impact for Life Science

But thinking in nanometers doesn’t necessarily mean thinking small. Despite the scale of the materials, nanotechnology can and does have a big impact—particularly when it comes to its applications in life scienceNano Body II 43a262816377a448922f9811e069be13

Perhaps that’s why companies like Merck (NYSE:MRK) continue to invest in nanotechnology. Emend, Merck’s anti-nausea drug for chemotherapy patients, is formulated as NanoCrystal drug particles.

Meanwhile, Pfizer (NYSE:PFE) recently bought the assets of Bind Therapeutics, a nanotech drug company. The Wall Street Journalreportedthat Pfizer will continue Bind Therapeutics’ work developing nanoparticle oncology drugs.

Nanotechnology has applications beyond pharmaceuticals, too. Several medical devices, including burn dressings, surgical mesh and a laparoscopic vessel fusion system all use nanotechnology. And over in the biotech space, it can even be used to engineer tissue.

 

Future Applications

Nanotechnology has more life science applications on the horizon. Nanorobots might one day detect the presence of cancerous cells, or seek out bacteria in the bloodstream. Nanoparticles could be used in drug delivery, targeting treatments to affected cells.

It may sound like the stuff of science fiction, but nanotechnology is making such developments possible. Indeed, its applications in healthcare are a major reason why the nanotechnology market is growing. Areportfrom Global Industry Analysts projects the global nanotech market to reach US$7.8 billion by 2020—just four short years from now.

With that timeline in mind, life science investors may consider investigating nanotechnology now. After all, such securities are usually a long term investment—and for the patient, savvy investor, the potential pay-offs could be huge.

 

NEWS .. NEWS .. NEWS .. NEWS .. NEWS .. NEWS .. NEWS .. NEWS 

tenka-growing-plants-082616-picture1“A new Energy Storage  company is coming of age!”

Tenka Energy, LLC ~ “Starting Small and GROWING BIG!”

GNT Thumbnail Alt 3 2015-page-001Genesis Nanotechnology, Inc.

       Is Pleased to Present 

               Tenka Energy, LLC

 

 

Tenka Energy will develop and commercialize the Next Generation of Super-Capacitors and Batteries, providing the High-Energy-Density, in Flexible-Thin-Form with Rapid Charge/ Recharge Cycles with  Extended Life that is required and in high demand from a“power starved world”. The opportunity is based on a Nanoporous-Nickel Flexible Thin-form technology that is  easily scaled, from Rice University.

 

 

tourportrait2015-300 Tenka holds the Exclusive IP Licensing Rights from Rice University to the Technologies developed by, Dr. James M. Tour, PhD –named “One of the Fifty (50) most influential scientists in the World today.” 

 

 

tenka-plant-seed-picture1Tenka’s Management and Science Teams have over 160+ Years of ‘hands on’ experience. We already have our First Customer! “Starting small … and growing big!”

 

 

Identified Key Markets and Commercial Applications

Powered Digital Smart Cards: Use your ‘Powered Smart Card’ just like your current Smart Card. Load up to 20 cards. Complete displays. Easy to use.tenka-smartcard-picture1

tenka-flex-med-082616-picture1Medical Devices: Flexible, Thin and Energy Dense.

 

Drone Batteries: More than Doubling current possible flight times. tenka-drone-picture1

 

Power Banks Charging Stations tenka-power-st-0916-picture1

tenka-ev-batts-picture1

 

Wearable Electronics/ EV Batteries

tenka-growing-plants-082616-picture1
 
 
 
For Direct Information You can Also Contact:
Bruce W. Hoy
CEO Genesis Nanotechnology, Inc.

rice-tour-asphalt-0916-id44535

 

A Rice University laboratory has improved its method to turn plain asphalt into a porous material that can capture greenhouse gases from natural gas. In research detailed this month in Advanced Energy Materials(“Ultra-High Surface Area Activated Porous Asphalt for CO2 Capture through Competitive Adsorption at High Pressures”), Rice researchers showed that a new form of the material can sequester 154 percent of its weight in carbon dioxide at high pressures that are common at gas wellheads.

Raw natural gas typically contains between 2 and 10 percent carbon dioxide and other impurities, which must be removed before the gas can be sold. The cleanup process is complicated and expensive and most often involves flowing the gas through fluids called amines that can soak up and remove about 15 percent of their own weight in carbon dioxide. The amine process also requires a great deal of energy to recycle the fluids for further use.
“It’s a big energy sink,” said Rice chemist James Tour, whose lab developed a technique last year to turn asphalt into a tough, sponge-like substance that could be used in place of amines to remove carbon dioxide from natural gas as it was pumped from ocean wellheads.

rice-tour-asphalt-0916-id44535

 

Rice University scientists have improved their asphalt-derived porous carbon’s ability to capture carbon dioxide, a greenhouse gas, from natural gas. The capture material derived from untreated Gilsonite asphalt has a surface area of 4,200 square meters per gram. (Image: Almaz Jalilov/Rice University) 

 

Initial field tests in 2015 found that pressure at the wellhead made it possible for that asphalt material to adsorb, or soak up, 114 percent of its weight in carbon at ambient temperatures.

Tour said the new, improved asphalt sorbent is made in two steps from a less expensive form of asphalt, which makes it more practical for industry.
“This shows we can take the least expensive form of asphalt and make it into this very high surface area material to capture carbon dioxide,” Tour said. “Before, we could only use a very expensive form of asphalt that was not readily available.”

 

 micropores in carbon capture material
A scanning electron microscope image shows micropores in carbon capture material derived from common asphalt. The material created at Rice University sequesters 154 percent of its weight in carbon dioxide at 54 bar pressure, a common pressure at wellheads. (Image: Tour Group/Rice University) 
The lab heated a common type asphalt known as Gilsonite at ambient pressure to eliminate unneeded organic molecules, and then heated it again in the presence of potassium hydroxide for about 20 minutes to synthesize oxygen-enhanced porous carbon with a surface area of 4,200 square meters per gram, much higher than that of the previous material.
The Rice lab’s initial asphalt-based porous carbon collected carbon dioxide from gas streams under pressure at the wellhead and released it when the pressure was released. The carbon dioxide could then be repurposed or pumped back underground while the porous carbon could be reused immediately.
In the latest tests with its new material, Tours group showed its new sorbent could remove carbon dioxide at 54 bar pressure. One bar is roughly equal to atmospheric pressure at sea level, and the 54 bar measure in the latest experiments is characteristic of the pressure levels typically found at natural gas wellheads, Tour said.
Source: Rice University

Osmotic Power 72516 img_0688

Harvesting renewable ‘blue energy’ from salt concentration gradients, such as those that occur at river mouths where fresh water mixes with salty sea water, just got a boost. An osmotic nanogenerator made from atom thick molybdenum disulfide (MoS2) has been created that can turn much more of this chemical energy into electricity than ever before.1

The molybdenum disulfide nanopore membrane (blue and yellow) uses salinity gradients to generate electricity © Nature Publishing Group

With the potential to be a considerable source of energy, osmotic power has gained ground in recent years with several pilot power plants around the world. 

It’s estimated that a total of around two terawatts of clean energy – the equivalent of around 2000 nuclear reactors – could be harvested worldwide from locations where salt concentration gradients occur.
Two main membrane technologies exist to harness osmotic power from solutions with differing salt concentrations. One is pressure retarded osmosis (PRO) which uses membranes to exploit pressure differences and drive a turbine, while the other is called reverse electrodialysis (RED) which involves ion exchange across a charged membrane. However, both methods have been limited by the efficiency and power density of materials that have only been able to generate a few watts per square metre of membrane.

However, the world’s first prototype PRO osmotic power plant, which was opened by Statkraft in Norway in 2009, was deemed uneconomical and shelved in 2013.
Better materials have been developed though, including boron nitride nanotubes which French researchers showed could produce 1000 watts per square meter in 2013, leading to a patent and a spin-off.

Now, Swiss and US researchers have discovered something even better – a MoS2 membrane punctured with pores that has an estimated power generation two to three orders of magnitude greater than boron nitride nanotubes, and could be as much as a million times greater than traditional RED osmotic power membranes.
Positive power

‘This is the thinnest membrane for this purpose,’ explains Jiandong Feng who led the work at the Swiss Federal Institute of Technology at Lausanne (EPFL). ‘As transport through a membrane scales inversely with membrane thickness, our single layer MoS2 nanopore, produced substantial power density.’


Feng’s team used transmission electron microscopy to drill 5nm wide pores into their MOS2 sheets © Nature Publishing Group

The new RED-based osmotic nanogenerator has a 0.65nm thick MoS2 membrane with a single nanopore that separates two reservoirs containing potassium chloride solutions of different concentrations.

A chemical potential gradient forms at the pore where the two solutions can mix and this drives potassium and chloride ions over the pore. Since the pore’s surface is negatively charged, it acts as a screen to usher through many more positive than negative ions which produces a current.

The team showed off the nanogenerator’s capabilities by connecting two sheets together to power a MoS2 transistor. Although the team only demonstrated this small scale application, Feng says the nanogenerators have potential for scaling up for sea water power generation.
‘This shows that new materials, with a diverted use from nanoelectronics towards fluid transport, can make a breakthrough in this field,’ comments Lydéric Bocquet at France’s National Center for Scientific Research in Paris who was behind the boron nitride nanotube research.2

However, he suggests that making metre square MoS2 membranes, which to his knowledge has never been achieved, could limit large-scale power production. But he adds it is still worth a try.
Even if it’s possible to make large MoS2 sheets, this natural power source may still be out of reach, suggests Ngai Yin Yip who studies membrane technologies at Columbia University in New York, US. ‘

There are other practical and technical obstacles in accessing the energy of natural salinity gradients on a large scale, such as the presence of naturally-occurring foulants in river water and seawater clogging up nanopores,’ he explains.
However, both Bocquet and Yip think the nanogenerators could find use in low energy, small-scale niche applications. ‘If the system can be further developed to draw from two separate reservoirs of different salinity with minimal energy consumption using innovative techniques, the nanogenarator system can be perpetually self-powered,’ says Yip. ‘These nanogenerators could be deployed in remote locations without having to be recharged or have batteries replaced, to power devices such as nanosensors.”

mit-convergence_0-070516

Read Today’s Top Stories in Nanotechnology and the ‘Business’ of Nanotechnology. 

Stories about the Discoveries and Technologies that will reshape our world and drive New Economic Engines for the Future.

Read Genesis Nanotechnology Online Here

Stories Like:

Cancer 052716 nanoparticles-nanomedicineHacking metastasis: Nanotechnology researchers find new way to target tumors

 

and …

Canadas-flagCanadian Investors Need to Think Globally to Compete with US Counterparts

 

and much more …

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpgFollow Us on Facebook

Twitter Icon 042616.jpgUp to the Minute Nanotech News on Our Twitter Feed

LinkedIn IconA 042316.jpg‘Link-Up” with Us on LinkedIn

 Website Icon 042616Connect with Our Website

YouTube small 050516Watch Our YouTube Video 

 

Advanced Nano Scale Storage 111245_web

 

*** Read Genesis Nanotech Online : This Week’s Top Stories in Nanotechnology ***

Click Here To Read Genesis Nanotech Online

 

Stories Like …

MIT 070116 sem-silk-nanofibrils-membrane-mit-cee_0 MIT: Silk-based filtration material breaks barriers: Engineers find nanosized building blocks of silk hold the secrets to improved filtration membranes

 

Innovative Navy-funded drone is master of the air and water: Rutgers University

 

KAUST: Using Graphene Quantum Dots to Get More Energy from the Solar Spectrum

Plus Many More ….

Click Here To Read Genesis Nanotech Online

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpgFollow Us on Facebook    https://www.facebook.com/GenesisNanoTech/

Twitter Icon 042616.jpg Get the Latest on Our Twitter  https://twitter.com/GenesisNanoTech

LinkedIn IconA 042316.jpg ‘Link Up With Us on LinkedIn      https://www.linkedin.com/groups/3935461

Blog Pic cropped-microbots-water Follow Our Top 10 Nano-Blog – “Great Things from Small Things”  https://genesisnanotech.wordpress.com/

Website Icon 042616  Connect with Us and Get More Information on Our Website      http://genesisnanotech.com/

YouTubeA 042316 Watch Our YouTube Video   https://youtu.be/Y1618kgUSXI

Nano Education 062116 nn-2016-03872b_0004

Nanoscience is one of the fastest growing and most impactful fields in global scientific research. In order to support the continued development of nanoscience and nanotechnology, it is important that nanoscience education be a top priority to accelerate research excellence. In this Nano Focus, we discuss current approaches to nanoscience training and propose a learning design framework to promote the next generation of nanoscientists. Prominent among these are the abilities to communicate and to work across and between conventional disciplines. While the United States has played leading roles in initiating these developments, the global landscape of nanoscience calls for worldwide attention to this educational need. Recent developments in emerging nanoscience nations are also discussed. Photo credit: Jae Hyeon Park.

Education has long been recognized as an important factor for growing the fields of nanoscience and nanotechnology and solidifying and expanding their roles in the global economy. In many countries, there is growing interest in developing educational programs across the full spectrum of educational levels from K-12 to postgraduate studies.

Various formal and informal educational practices are being designed and tested that promote general awareness of nanoscience and nanotechnology as well as provide advanced learning and skills development, including through group learning and peer assessment”In their article, the authors discuss innovative learning models that are being applied at the undergraduate level in order to train future leaders at the interface of engineering and management.

students running nanoscience experiments

Middle and high school students spend time at the California NanoSystems Institute at UCLA running nanoscience experiments. High school teachers from over 100 schools and 30 school districts are trained, networked to one another, and supplied with kits for their classrooms. Graduate students, postdocs, faculty, and staff run, expand, and improve these fully subscribed outreach events on a continuous basis. (© American Chemical Society)

While thee programs are not strictly focused on nanotechnology, many graduates pursue nanotechnology-focused careers and they provide examples of important factors that should be considered in the nanotechnology field.Moreover, they represent the growing trend of holistic learning, which integrates coursework across disciplines, promotes foreign experiences, and encourages industrial internships.

Here is the set of recommendations they make:

Inspire Students To Envision What Is or Could Be Possible

Possibilities include a greater focus on nanotechnology applications in courses or hands-on laboratory experiences that tie in with class concepts. Even before reaching the classroom, students should have positive views of nanoscience and the potential it holds. Successful learning practices start with capturing the imagination of students. Communicating the remarkable features of nanoscience in a simple and clear way to the mainstream public would go a long way toward achieving this goal.

Promote Role Models Who Impact Society

From an educational perspective, the tech world is a particularly good example because successful entrepreneurs such as Steve Jobs, Elon Musk, Sheryl Sandberg, and Mark Zuckerberg have captured the public audience and inspired countless students to think beyond the classroom. In nanotechnology, similar role models can inspire students with the many opportunities available in the field.

Encourage Global Collaboration

Nanotechnology research and development is truly global. Early exposure to these trends will better inform students about career opportunities and give them ideas about how to work together in teams across disciplines and cultures. A growing number of partnerships already provide international experiences for nanoscience and nanotechnology students.

Support Early Exposure Inside and Outside of the Laboratory

For many students, nanoscience and nanotechnology are about working in a lab doing scientific research. While this activity is common, its generalization could not be farther from the truth. There are many possible ways to get involved in nanotechnology, from instructional education and hands-on training to entrepreneurship and manufacturing.Holistic approaches that integrate these different possibilities, while providing targeted career development, would greatly benefit students and the overall goals of nanotechnology education. Developing a strong workforce infrastructure for nanotechnology

Communication Across Fields

Stressing the importance of communication, the authors conclude:

“Finally, one of the great strengths of the nanoscience and nanotechnology communities is that we have taught each other how to communicate across fields, to look at and to leverage each other’s approaches, and to address the key issues of a multitude of fields.

As a field, we are increasingly viewed as problem solvers in science and technology, developing new tools, materials, methods, and opportunities. Bringing this aspect of our field to students (and scientists and engineers at all levels) will have significant impact on the world around us and our ability to make it better.”

By Michael Berger. © Nanowerk

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Facebook 042616.jpgFollow Us on Facebook

Twitter Icon 042616.jpgUp to the Minute Nanotech News on Our Twitter Feed

LinkedIn IconA 042316.jpg‘Link-Up” with Us on LinkedIn

 Website Icon 042616Connect with Our Website

YouTube small 050516Watch Our YouTube Video 

Nano Body II 43a262816377a448922f9811e069be13Author: Tilda Barliya PhD

Peripheral nerve lacerations are common injuries and often cause long lasting disability (1a) due to pain, paralyzed muscles and loss of adequate sensory feedback from the nerve receptors in the target organs such as skin, joints and muscles (1b).

 

Nerve injuries are common and typically affect young adults with the majority of injuries occur from trauma or complication of surgery. Traumatic injuries can occur due to stretch, crush, laceration (sharps or bone fragments), and ischemia, and are more frequent in wartime, i.e., blast exposure. Domestic or occupational accidents with glass, knifes of machinery may also occur.

Statistics show that peripheral nervous system (PNS) injuries were 87% from trauma and 12% due to surgery (one-third tumor related, two-thirds non– tumor related). Nerve injuries occurred 81% of the  time in theupper extremities and 11% in the lower extremities, with the balance in other locations (4).

Injury to the PNS can range from severe, leading to major loss of function or intractable neuropathic pain, to mild, with some sensory and/or motor deficits affecting quality of life.

Functional recovery after nerve injury involves a complex series of steps, each of which may delay or impair the regenerative process. In cases involving any degree of nerve injury, it is useful initially to categorize these regenerative steps anatomically on a gross level. The sequence of regeneration may be divided into anatomical zones (4):

  1. the neuronal cell body
  2. the segment between the cell body and the injury site
  3. the injury site itself
  4. the distal segment between the injury site and the end organ
  5. the end organ itself

A delay in regeneration or unsuccessful regeneration may be attributed to pathological changes that impede normal reparative processes at one or more of these zones.

Nanotechnology-for-Regenerating-Nerves-2

Repairing nerve defects with large gaps remains one of the most operative challenges for surgeons. Incomplete recovery from peripheral nerve injuries can produce a diversity of negative outcomes, including numbness, impairment of sensory or motor function, possibility of developing chronic pain, and devastating permanent disability.

In the past few years several techniques have been used to try and repair nerve defects and include:

  • Coaptation
  • Nerve autograph
  • Biological or polymeric nerve conduits (hollow nerve guidance conduits)

For example, When a direct repair of the two nerve ends is not possible, synthetic or biological nerve conduits are typically used for small nerve gaps of 1 cm or less. For extensive nerve damage over a few centimeters in length, the nerve autograft is the “gold standard” technique. The biggest challenges, however, are the limited number and length of available donor nerves, the additional surgery associated with donor site morbidity, and the few effective nerve graft alternatives.

Degeneration of the axonal segment in the distal nerve is an inevitable consequence of disconnection, yet the distal nerve support structure as well as the final target must maintain efficacy to guide and facilitate appropriate axonal regeneration. There is currently no clinical practice targeted at maintaining fidelity of the distal pathway/target, and only a small number of researchers are investigating ways to preserve the distal nerve segment, such as the use of electrical stimulation or localized drug delivery. Thus development of tissue-engineered nerve graft may be a better matched alternative (6,7).

The guidance conduit serves several important roles for nerve regeneration such as: a) directing axonal sprouting from the regenerating nerve b) protecting the regenerating nerve by restricting the infiltration of fibrous tissue c) providing a pathway for diffusion of neurotropic and neurotophic factors

Early guidance conduits were primarily made of silicone due to its stability under physiological conditions, biocompatibility, flexibility as well as ease of processing into tubular structures. Although silicone  conduits have proven reasonably successful as conduits for small gap lengths in animal models (<5 mm). The non-biodegradability of silicone conduits has limited its application as a strategy for long-term repair and recovery. Tubes also eventually become encapsulated with fibrous tissue, which leads to nerve compression, requiring additional surgical intervention to remove the tube.Another limiting factor with inert guidance conduits is that they provide little or no nerve regeneration for gap lengths over 10 mm in the PNS unless exogenous growth factors are used (6,7).

In animal studies, biodegradable nerve guidance conduits have provided a feasible alternative, preventing neuroma formation and infiltration of fibrous tissue. Biodegradable conduits have been fabricated from natural or synthetic materials such as collagen, chitosan and poly-L-lactic acid.

Nanostructured Scaffolds for Neural Tissue Engineering: Fabrication and Design

At the micro- and nanoscale, cells of the CNS/PNS reside within functional microenvironments consisting of physical structures including pores, ridges, and fibers that make up the extracellular matrix (ECM) and plasma membrane cell surfaces of closely apposed neighboring cells. Cell-cell and cell-matrix interactions contribute to the formation and function of this architecture, dictating signaling and maintenance roles in the adult tissue, based on a complex synergy between biophysical (e.g. contact-mediated signaling, synapse control), and biochemical factors (e.g. nutrient support and inflammatory protection). Neural tissue engineering scaffolds are aimed toward recapitulating some of the 3D biological signaling that is known to be involved in the maintenance of the PNS and CNS and to facilitate proliferation, migration and potentially differentiation during tissue repair.

Nanotechnology and tissue engineering are based on two main approaches:

  • Electrospinning (top-down) – involves the production of a polymer filament using an electrostatic force. Electrospinning is a versatile technique that enables production of polymer fibers with diameters ranging from a few microns to tens of nanometers.
  • Molecular self-assembly of peptides (bottom-up) – Molecular self-assembly is mediated by weak, non-covalent bonds, such as van der Waals forces, hydrogen bonds, ionic bonds, and hydrophobic interactions. Although these bonds are relatively weak, collectively they play a major role in the conformation of biological molecules found in nature.

Pfister et al (6) very nicely summarized the various polymeric fibers been used to achieve the goal of nerve regeneration, even in humans. These material include a wide array of polymers from silica to PLGA/PEG and Diblock copolypeptides.

Many of these approaches also enlist many trophic factors that have been investigated in nerve conduits

Currently there are three general biomaterial approaches for local factor delivery:

  1. Incorporation of factors into a conduit filler such as a hydrogel
  2. Designing a drug release system from the conduit biomaterial such as microspheres
  3. Immobilizing factors on the scaffold that are sensed in place or liberated upon matrix degradation.

Maeda et al had a  creative approach to bridge larger gaps by using the combination of nerve grafts and open conduits in an alternating “stepping stone” assembly, which may perform better than an empty conduit alone (8).

Summary

Peripheral nerve repair is a growing field with substantial progress being made in more effective repairs. Nanotechnology and biomedical engineering have made significant contributions; from surgical instrumentation to the development of tissue engineered grafting substitutes.  However, to date the field of neural tissue engineering has not progressed much past the conduit bridging of small gaps and has not come close to matching the autograf. Much more studies are needed to understand the cell behaviour that can promote cell survival, neurite outgrowth, appropriate re-innervation and consequently the functional recovery post PNS/CNS injuries. This is since understanding of the cellular response to the combination of these external cues within 3D architectures is limited at this stage.

 

Ref:

1a. Jaquet JB, Luijsterburg AJ, Kalmijn S, Kuypers PD, Hofman A, Hovius SE.  Median, ulnar, and combined median-ulnar nerve injuries:functional outcome and return to productivity. J Trauma 2001 51: 687-692.http://www.ncbi.nlm.nih.gov/pubmed/11586160

1b. Lundborg G, Rosen B. Hand function after nerve repair. Acta Physiol (Oxf) 2007 189: 207-217. http://www.ncbi.nlm.nih.gov/pubmed/17250571

1. Chang WC., Kliot M and Stretavan DW. Microtechnology and Nanotechnology in Nerve Repair. Neurological Research 2008; vol 30: 1053-1062. http://vision.ucsf.edu/sretavan/sretavanpdfs/2008b-Chang%20&%20Sretavan.pdf

2. Biazar E., Khorasani MT and Zaeifi D. Nanotechnology for peripheral nerve regeneration. Int. J. Nano. Dim. 2010 1(1): 1-23. http://www.ijnd.ir/doc/2010-v1-i1/2010-V1-I1-1.pdf

3. Albert Aguayo. Nerve regeneration revisited. Nature Reviews Neuroscience 7, 601 (August 2006).

http://www.nature.com/nrn/journal/v7/n8/full/nrn1974.html

4. Burnett MG and  Zager EL. Pathophysiology of Peripheral Nerve Injury: A Brief Review. Neurosurg Focus. 2004;16(5) .

http://www.medscape.com/viewarticle/480071_5

5. Dag Welin. Neuroprotection and axonal regeneration after peripheral nerve injury. MEDICAL DISSERTATIONS

Welin, D., Novikova, L.N., Wiberg, M., Kellerth, J-O. and Novikov, L.N. Survival and regeneration of cutaneous and muscular afferent neurons after peripheral nerve injury in adult rats. Experimental Brain Research, 186, 315-323, 2008.

http://link.springer.com/article/10.1007%2Fs00221-007-1232-5

6. Pfister BJ., Gordon T., Loverde JR., Kochar AS., Mackinnon SE and Cullen Dk. Biomedical Engineering Strategies for Peripheral Nerve Repair: Surgical Applications, State of the Art, and Future Challenges. Critical Reviews™ in Biomedical Engineering 2011, 39(2):81–124.http://www.med.upenn.edu/cullenlab/user_documents/2011Pfisteretal-PNIReviewArticleCritRevBME.pdf

7. Zhou K, Nisbet D, Thouas G,  Bernard C and Forsythe J. Bio-nanotechnology Approaches to Neural Tissue Engineering. Intechopen. Com. http://cdn.intechopen.com/pdfs/9811/InTech-Bio_nanotechnology_approaches_to_neural_tissue_engineering.pdf

8. Maeda T, Mackinnon SE, Best TJ, Evans PJ, Hunter DA, Midha RT. Regeneration across ’stepping-stone’ nerve grafts. Brain Res. 1993;618(2):196–202. http://www.ncbi.nlm.nih.gov/pubmed/?term=Maeda+T+and+regeneration+across+stepping+stone


1 2 3 4 5 6 7 77
Recent Posts

Categories

Search