Great things from small things

Blog Archive

Filter by: Carbon Capture

Smokestack Emissions Nano Carbon Capture id42759

“Our climate change solution is two fold: To transform the greenhouse gas carbon dioxide into valuable products and to provide greenhouse gas emission-free alternatives to today’s industrial and transportation fossil fuel processes,” Stuart Licht, professor of chemistry at George Washington University

An interdisciplinary team of scientists has worked out a way to make electric vehicles that are not only carbon neutral, but carbon negative, capable of actually reducing the amount of atmospheric carbon dioxide as they operate. They have done so by demonstrating how the graphite electrodes used in the lithium-ion batteries that power electric automobiles can be replaced with carbon material recovered from the atmosphere.

The recipe for converting carbon dioxide gas into batteries is described in a paper published in the March 2 issue of the journal ACS Central Science (“Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes”).

Converting Carbon Dioxide into BatteriesThe Solar Thermal Electrochemical Process (STEP) converts atmospheric carbon dioxide into carbon nanotubes that can be used in advanced batteries. (Image: Julie Turner, Vanderbilt University)

“Our climate change solution is two fold: To transform the greenhouse gas carbon dioxide into valuable products and to provide greenhouse gas emission-free alternatives to today’s industrial and transportation fossil fuel processes,” Stuart Licht, professor of chemistry at George Washington University said.

“In addition to better batteries other applications for the carbon nanotubes include carbon composites for strong, lightweight construction materials, sports equipment and car, truck and airplane bodies.” The unusual pairing of carbon dioxide conversion and advanced battery technology is the result of a collaboration between Dr. Licht, and the laboratory of assistant professor of mechanical engineering Cary Pint at Vanderbilt University. Licht adapted the lab’s solar thermal electrochemical process (STEP) so that it produces carbon nanotubes from carbon dioxide and with Pint by incorporating them into both lithium-ion batteries like those used in electric vehicles and electronic devices and low-cost sodium-ion batteries under development for large-scale applications, such as the electric grid. In lithium-ion batteries, the nanotubes replace the carbon anode used in commercial batteries.

The team demonstrated that the carbon nanotubes gave a small boost to the performance, which was amplified when the battery was charged quickly. In sodium-ion batteries, the researchers found that small defects in the carbon, which can be tuned by STEP, can unlock stable storage performance over 3.5 times above that of sodium-ion batteries with graphite electrodes. Most importantly, both carbon-nanotube batteries were exposed to about 2.5 months of continuous charging and discharging and showed no sign of fatigue.

Published on Feb 25, 2016: Video interview with Cary Pint explaining this research.

Scientists from Vanderbilt and George Washington universities have worked out a way to make electric vehicles not just carbon neutral but carbon negative by demonstrating how the graphite electrodes used in the lithium-ion batteries can be replaced with carbon recovered from the atmosphere.

“This trailblazing research has achieved yet another amazing milestone with the incorporation of the carbon nanotubes produced by Stuart Licht’s STEP reduction of carbon dioxide process into batteries for electric vehicles and large scale storage,” said Michael King, chair of GW’s Department of Chemistry. “We are thrilled by this translation of basic research into potentially useful consumer products while mitigating atmospheric carbon dioxide buildup. This is a win-win for everyone!”
The researchers estimate that with a battery cost of $325 per kWh (the average cost of lithium-ion batteries reported by the Department of Energy in 2013), a kilogram of carbon dioxide has a value of about $18 as a battery material – six times more than when it is converted to methanol – a number that only increases when moving from large batteries used in electric vehicles to the smaller batteries used in electronics.

And unlike methanol, combining batteries with solar cells provides renewable power with zero greenhouse emissions, which is needed to put an end to the current carbon cycle that threatens future global sustainability.

Licht also proposes a modified flue system for combustion plants that incorporates this process could be self-sustaining, as exemplified by a new natural gas power plant with zero carbon dioxide emissions. That’s because the side product of the process is pure oxygen, which plants could then use for further combustion. The calculated total cost per metric tonne of CNTs would be much less expensive than current synthetic methods.
“This approach not only produces better batteries but it also establishes a value for carbon dioxide recovered from the atmosphere that is associated with the end-user battery cost unlike most efforts to reuse CO2 that are aimed at low-valued fuels, like methanol, that cannot justify the cost required to produce them,” said Pint.
Source: Vanderbilt University

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Watch Our YouTube Video

Follow Our ‘Top Ten’ Blog: “Great Things from Small Things”

Follow Us on Twitter: @Genesisnanotech

Follow and ‘Like’ Us on Facebook

Connect with Our Website

‘Join the Conversation’ at Our LinkedIn ‘Nano Network’

Nano Weaving RD_COF

There are many different ways to make nano-materials but weaving, the oldest and most enduring method of making fabrics, has not been one of them – until now. An international collaboration led by scientists at the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley, has woven the first three-dimensional covalent organic frameworks (COFs) from helical organic threads. The woven COFs display significant advantages in structural flexibility, resiliency and reversibility over previous COFs – materials that are highly prized for their potential to capture and store carbon dioxide then convert it into valuable chemical products.

“We have taken the art of weaving into the atomic and molecular level, giving us a powerful new way of manipulating matter with incredible precision in order to achieve unique and valuable mechanical properties,” says Omar Yaghi, a chemist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Chemistry Department, and is the co-director of the Kavli Energy NanoScience Institute (Kavli-ENSI).

“Weaving in chemistry has been long sought after and is unknown in biology,” Yaghi says. “However, we have found a way of weaving organic threads that enables us to design and make complex two- and three-dimensional organic extended structures.”

Yaghi is the corresponding author of a paper in Science reporting this new technique. The paper is titled “Weaving of organic threads into a crystalline covalent organic framework.” The lead authors are Yuzhong Liu, Yanhang Ma and Yingbo Zhao. Other co-authors are Xixi Sun, Felipe Gándara, Hiroyasu Furukawa, Zheng Liu, Hanyu Zhu, Chenhui Zhu, Kazutomo Suenaga, Peter Oleynikov, Ahmad Alshammari, Xiang Zhang and Osamu Terasaki.

COFs and their cousin materials, metal organic frameworks (MOFs), are porous three-dimensional crystals with extraordinarily large internal surface areas that can absorb and store enormous quantities of targeted molecules. Invented by Yaghi, COFs and MOFs consist of molecules (organics for COFs and metal-organics for MOFs) that are stitched into large and extended netlike frameworks whose structures are held together by strong chemical bonds. Such frameworks show great promise for, among other applications, carbon sequestration.

Through another technique developed by Yaghi, called “reticular chemistry,” these frameworks can also be embedded with catalysts to carry out desired functions: for example, reducing carbon dioxide into carbon monoxide, which serves as a primary building block for a wide range of chemical products including fuels, pharmaceuticals and plastics.

In this latest study, Yaghi and his collaborators used a copper(I) complex as a template for bringing threads of the organic compound “phenanthroline” into a woven pattern to produce an immine-based framework they dubbed COF-505. Through X-ray and electron diffraction characterizations, the researchers discovered that the copper(I) ions can be reversibly removed or restored to COF-505 without changing its woven structure. Demetalation of the COF resulted in a tenfold increase in its elasticity and remetalation restored the COF to its original stiffness.

“That our system can switch between two states of elasticity reversibly by a simple operation, the first such demonstration in an extended chemical structure, means that cycling between these states can be done repeatedly without degrading or altering the structure,” Yaghi says. “Based on these results, it is easy to imagine the creation of molecular cloths that combine unusual resiliency, strength, flexibility and chemical variability in one material.”

Yaghi says that MOFs can also be woven as can all structures based on netlike frameworks. In addition, these woven structures can also be made as nanoparticles or polymers, which means they can be fabricated into thin films and electronic devices.

“Our weaving technique allows long threads of covalently linked molecules to cross at regular intervals,” Yaghi says. “These crossings serve as points of registry, so that the threads have many degrees of freedom to move away from and back to such points without collapsing the overall structure, a boon to making materials with exceptional mechanical properties and dynamics.”

Source: Lawrence Berkeley National Laboratory

KAUST Carbon Capture untitled


An environment-friendly method for synthesizing a microporous material that can adsorb carbon dioxide emitted from fossil fuel-driven power plants has been developed by researchers at KAUST1.

Burning carbon-based energy sources to meet the world’s energy demands is recognized to have a negative impact on our planet: global warming and ocean acidification could leave an indelible mark on Earth. The slow development process and low efficiency of alternatives such as nuclear fusion and solar power makes it difficult to wean ourselves off the use of conventional fossil fuels.

An alternative strategy is to develop technologies that mitigate the deleterious effects of fossil fuels. Carbon capture is one such approach, and proposes to use porous materials that can adsorb and store emitted carbon dioxide at the end of the energy generation process to prevent it from entering the atmosphere.

Metal–organic frameworks (MOFs) are one promising class of porous solid-state materials. These crystalline networks are made up of metal ions or clusters interconnected by organic molecules.

“The periodic arrangement of these organic and inorganic molecular building blocks gives MOFs one of their most defining properties: a functional and tunable pore system,” said KAUST Professor of Chemical Science Mohamed Eddaoudi. “The deliberate control of the available and accessible space shape, size and functionality enables adsorbing and storing select gases.”

The translation of a prospective MOF that selectively captures carbon dioxide from a laboratory scale to industrial scale settings requires the development of economical synthetic approaches. The manufacturing process frequently involves organic solvents that can also have a negative impact on the environment.

Eddaoudi and colleagues from KAUST’s Advanced Membranes & Porous Materials Research Center have developed a simple and solvent-free method to create a MOF adsorbent that selectively captures carbon dioxide.

The reported MOF structure, which they call SIFSIX-3-Ni, was made by dry mechanical mixing the organic component pyrazine with the inorganic solid NiSiF6 at a molar ratio of four to one, and then wetting with a few drops of water. This was heated for four hours at 65 degrees Celsius and then at 105 degrees Celsius for an additional four hours.

The team confirmed the efficient adsorption of carbon dioxide, even in an environment with very low carbon dioxide content. The authors also proved that the material is tolerant to the acidic gas hydrogen sulfide that is present in natural gas.


  1.  Shekhah, O., Belmabkhout, Y., Adil, K., Bhatt, P. M., Cairns, A. J. & Eddaoudi, M. A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal–organic framework. Chemical Communications 51, 13595-13598 (2015). | article

Recent Posts