Great things from small things

Blog Archive

Home
Filter by: Fuel Cells
Published on Oct 10, 2016

Recently, researchers at the National Renewable Energy Laboratory wanted to know, how well does NREL’s hydrogen infrastructure support fueling multiple fuel cell electric vehicles (FCEVs) for a day trip to the Rocky Mountains?car-fc-3-nrel-download

The answer-great! NREL staff took FCEVs on a trip to demonstrate real-world performance and range in high-altitude conditions. To start the trip, drivers filled three cars at NREL’s hydrogen fueling station. The cars made a 175-mile loop crossing two 11,000+ foot mountain passes on the way. Back at NREL, the cars were filled up with hydrogen in ~5 minutes and ready to go again. Learn more at http://www.nrel.gov/hydrogen.

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

img_0742-1

Solar Fuel Cell U of T energy_cycleRead More on Nano Enabled Fuel Cell Technologies for many more Energy Applications: Genesis Nanotechnology Fuel Cell Articles & Videos

Fuel cell electric vehicles have a long way to go before they can compete with their battery EV cousins, and energy storage is a key sticking point when the fuel is hydrogen. Hydrogen is light, plentiful, and fabulously energy dense, but energy storage in a personal mobility unit racing down a crowded highway is a different kind of chicken. Safety, cost, and performance are critical sticking points, and a research team at Lawrence Berkeley Laboratory is on to a solution for at least one of those.

hydrogen energy storage with graphene

Energy Storage Challenges For Hydrogen Fuel Cell EVs

The US Energy Department’s 2015 annual report provides a birds-eye view of the array of energy storage solutions that are emerging for hydrogen fuel cells, including advancements in hydrogen tank technology as well as solids-based storage.

Despite the progress, according to the Energy Department, challenges still remain for stationary and portable fuel cells in terms of raising the energy storage density, and there are “significant challenges” for fuel cell EVs. The problem is this:

Hydrogen has the highest energy per mass of any fuel; however, its low ambient temperature density results in a low energy per unit volume, therefore requiring the development of advanced storage methods that have potential for higher energy density.

The Energy Department has set a goal of 2020 for achieving verifiable hydrogen storage systems for light duty fuel cell EVs that meet the driving public’s thirst for range, comfort, refueling convenience, and performance. Here are the targets:

1.8 kWh/kg system (5.5 wt.% hydrogen)

1.3 kWh/L system (0.040 kg hydrogen/L)

$10/kWh ($333/kg stored hydrogen capacity)

Fuel cell EVs are already leaking into the transportation scene, particularly in California, Japan, and the European Union, notably including Wales.

However, the Energy Department is already looking beyond the current state of on-road technology to meet its 2020 goal. According to the agency, the 300-mile range is being met by using compressed gas, high pressure energy storage technology, and the problem is that competing technology on the market today — primarily gasmobiles and hybrids — already exceeds that range.

To compete for consumers on the open market, the agency is pursuing a near-term goal of improving compressed gas storage, primarily by deploying fiber reinforced composites that enable 700 bar pressure.

The long term goal consists of two pathways. One is to improve “cold” compressed gas energy storage technology, and the other is to go a different route altogether and store hydrogen within materials such as sorbents, chemical hydrogen storage materials, and metal hydrides.

The Berkeley Lab Energy Storage Solution

Where were we? Oh right, Berkeley Lab. Berkeley Lab has been tackling the metal hydride pathway.

Metal hydrides are compounds that consist of a transition metal bonded to hydrogen. They are believed to be the most “technologically relevant” class of materials for storing hydrogen, partly due to the broad range of applications.

That’s the theory. The problem is that when it comes to real world performance, metal hydrides are highly sensitive to contamination and they degrade somewhat rapidly unless properly shielded.

The Berkeley Lab energy storage solution consists of a graphene “filter” encasing nanocrystals of magnesium. With the addition of the graphene layer, the magnesium crystals act as a sort of sponge for absorbing hydrogen, providing both safety and compactness without causing performance issues:

The graphene shields the nanocrystals from oxygen and moisture and contaminants, while tiny, natural holes allow the smaller hydrogen molecules to pass through. This filtering process overcomes common problems degrading the performance of metal hydrides for hydrogen storage.

Berkeley Lab has provided this photo to show off how stable the crystals are when exposed to air (for scale, the bottle cap is about the size of a thumbnail):

graphene hydrogen energy storage

At one atom thick (yes, one atom), graphene is known to be an incredibly finicky material to work with. It is extremely difficult to synthesize it without defects, but that’s not a problem for this energy storage solution. The defects are actually desirable in this case. The tiny gaps enable molecules of hydrogen gas to wriggle through, but oxygen, water, and other contaminants are too large to penetrate the shield.

The new energy formula also solves another key challenge for metal hydrides. They tend to take in and dispense hydrogen at a relatively slow pace, but the Berkeley Lab solution has sped up the intake-outflow cycle significantly. That effect is attributed to the nanoscale size of the graphene-shielded crystals, which provide a greater surface area.

Energy Department Gets The Last Word?

We’ve been having a lively debate about fuel cell electric EVs over here at CleanTechnica, so let’s hear from the Berkeley Lab team:

A potential advantage for hydrogen-fuel-cell vehicles, in addition to their reduced environmental impact over standard-fuel vehicles, is the high specific energy of hydrogen, which means that hydrogen fuel cells can potentially take up less weight than other battery systems and fuel sources while yielding more electrical energy.

However, the team also makes it clear that:

More R&D is needed to realize higher-capacity hydrogen storage for long-range vehicle applications that exceed the performance of existing electric-vehicle batteries…

Among other issues, the next step for a sustainable fuel cell EV future is to develop sustainable and renewable sources for hydrogen fuel. Currently the main source of hydrogen is natural gas, which puts fuel cell EVs in the same boat as battery EVs that draw electricity from a coal or natural gas-fired grid.

Drop of Water 160322080534_1_540x360
Drop of water. “Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Yao.
Credit: © Deyan Georgiev / Fotolia

Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen.

Professor Xiangdong Yao and his team from Griffith’s Queensland Micro- and Nanotechnology Centre have successfully managed to use the element to produce hydrogen from water as a replacement for the much more costly platinum.

“Hydrogen production through an electrochemical process is at the heart of key renewable energy technologies including water splitting and hydrogen fuel cells,” says Professor Yao.

“Despite tremendous efforts, exploring cheap, efficient and durable electrocatalysts for hydrogen evolution still remains a great challenge.

“Platinum is the most active and stable electrocatalyst for this purpose, however its low abundance and consequent high cost severely limits its large-scale commercial applications.

“We have now developed this carbon-based catalyst, which only contains a very small amount of nickel and can completely replace the platinum for efficient and cost-effective hydrogen production from water.

“In our research, we synthesize a nickel-carbon-based catalyst, from carbonization of metal-organic frameworks, to replace currently best-known platinum-based materials for electrocatalytic hydrogen evolution.

“This nickel-carbon-based catalyst can be activated to obtain isolated nickel atoms on the graphitic carbon support when applying electrochemical potential, exhibiting highly efficient hydrogen evolution performance and impressive durability.”

Proponents of a hydrogen economy advocate hydrogen as a potential fuel for motive power including cars and boats and on-board auxiliary power, stationary power generation (e.g., for the energy needs of buildings), and as an energy storage medium (e.g., for interconversion from excess electric power generated off-peak).

Professor Yao says that this work may enable new opportunities for designing and tuning properties of electrocatalysts at atomic scale for large-scale water electrolysis.


Story Source:

The above post is reprinted from materials provided by Griffith University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lili Fan, Peng Fei Liu, Xuecheng Yan, Lin Gu, Zhen Zhong Yang, Hua Gui Yang, Shilun Qiu, Xiangdong Yao.Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nature Communications, 2016; 7: 10667 DOI: 10.1038/ncomms10667
newfuelcelld 031516A powdery mixture of graphene-wrapped magnesium nanocrystals, produced at Berkeley Lab, is stable in air. The mixture’s energy properties show promise for use in hydrogen fuel cells. Credit: Eun Seon Cho/Berkeley Lab

Hydrogen is the lightest and most plentiful element on Earth and in our universe. So it shouldn’t be a big surprise that scientists are pursuing hydrogen as a clean, carbon-free, virtually limitless energy source for cars and for a range of other uses, from portable generators to telecommunications towers—with water as the only byproduct of combustion.

While there remain scientific challenges to making -based energy sources more competitive with current automotive propulsion systems and other energy technologies, researchers at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new materials recipe for a battery-like cell—which surrounds hydrogen-absorbing magnesium nanocrystals with atomically thin graphene sheets—to push its performance forward in key areas.

The graphene shields the nanocrystals from oxygen and moisture and contaminants, while tiny, natural holes allow the smaller hydrogen molecules to pass through. This filtering process overcomes common problems degrading the performance of metal hydrides for .

These graphene-encapsulated magnesium crystals act as “sponges” for hydrogen, offering a very compact and safe way to take in and store hydrogen. The nanocrystals also permit faster fueling, and reduce the overall “tank” size.

“Among metal hydride-based materials for hydrogen storage for vehicle applications, our materials have good performance in terms of capacity, reversibility, kinetics and stability,” said Eun Seon Cho, a postdoctoral researcher at Berkeley Lab and lead author of a study related to the new fuel cell formula, published recently in Nature Communications.

New fuel cell design powered by graphene-wrapped nanocrystals
Thin sheets of graphene oxide (red sheets) have natural, atomic-scale defects that allow hydrogen gas molecules to pass through while blocking larger molecules such as oxygen (O2) and water (H2O). Berkeley Lab researchers encapsulated …more

In a hydrogen fuel cell-powered vehicle using these materials, known as a “metal hydride” (hydrogen bound with a metal) fuel cell, hydrogen gas pumped into a vehicle would be chemically absorbed by the magnesium nanocrystaline powder and rendered safe at low pressures.

Jeff Urban, a Berkeley Lab staff scientist and co-author, said, “This work suggests the possibility of practical hydrogen storage and use in the future. I believe that these materials represent a generally applicable approach to stabilizing reactive materials while still harnessing their unique activity—concepts that could have wide-ranging applications for batteries, catalysis, and energetic materials.”

The research, conducted at Berkeley Lab’s Molecular Foundry and Advanced Light Source, is part of a National Lab Consortium, dubbed HyMARC (Hydrogen Materials—Advanced Research Consortium) that seeks safer and more cost-effective hydrogen storage, and Urban is Berkeley Lab’s lead scientist for that effort.

The U.S. market share for all electric-drive vehicles in 2015, including full-electric, hybrids and plug-in hybrid vehicles, was 2.87 percent, which amounts to about 500,000 electric-drive vehicles out of total vehicle sales of about 17.4 million, according to statistics reported by the Electric Drive Transportation Association, a trade association promoting electric-drive vehicles.

Hydrogen-fuel-cell vehicles haven’t yet made major in-roads in vehicle sales, though several major auto manufacturers including Toyota, Honda, and General Motors, have invested in developing hydrogen fuel-cell vehicles. Indeed, Toyota released a small-production model called the Mirai, which uses compressed-hydrogen tanks, last year in the U.S.

A potential advantage for hydrogen-fuel-cell vehicles, in addition to their reduced environmental impact over standard-fuel vehicles, is the high specific energy of hydrogen, which means that can potentially take up less weight than other battery systems and fuel sources while yielding more electrical energy.

A measure of the energy storage capacity per weight of hydrogen fuel cells, known as the “gravimetric energy density,” is roughly three times that of gasoline. Urban noted that this important property, if effectively used, could extend the total vehicle range of hydrogen-based transportation, and extend the time between refueling for many other applications, too.

More R&D is needed to realize higher-capacity hydrogen storage for long-range vehicle applications that exceed the performance of existing electric-vehicle batteries, Cho said, and other applications may be better suited for hydrogen fuel cells in the short term, such as stationary power sources, forklifts and airport vehicles, portable power sources like laptop battery chargers, portable lighting, water and sewage pumps and emergency services equipment.

Cho said that a roadblock to metal hydride storage has been a relatively slow rate in taking in (absorption) and giving out (desorption) hydrogen during the cycling of the units. In fuel cells, separate chemical reactions involving hydrogen and oxygen produce a flow of electrons that are channeled as electric current, creating water as a byproduct.

The tiny size of the graphene-encapsulated nanocrystals created at Berkeley Lab, which measure only about 3-4 nanometers, or billionths of a meter across, is a key in the new fuel cell materials’ fast capture and release of hydrogen, Cho said, as they have more surface area available for reactions than the same material would at larger sizes.

Another key is protecting the magnesium from exposure to air, which would render it unusable for the fuel cell, she added.

Working at The Molecular Foundry, researchers found a simple, scalable and cost-effective “one pan” technique to mix up the graphene sheets and magnesium oxide nanocrystals in the same batch. They later studied the coated nanocrystals’ structure using X-rays at Berkeley Lab’s Advanced Light Source. The X-ray studies showed how pumped into the fuel cell mixture reacted with the magnesium nanocrystals to form a more stable molecule called magnesium hydride while locking out oxygen from reaching the magnesium.

“It is stable in air, which is important,” Cho said.

Next steps in the research will focus on using different types of catalysts—which can improve the speed and efficiency of chemical reactions—to further improve the fuel cell’s conversion of electrical current, and in studying whether different types of material can also improve the fuel cell’s overall capacity, Cho said.

Explore further: Hydrogen released to fuel cell more quickly when stored in metal nanoparticles

More information: Eun Seon Cho et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage, Nature Communications (2016). DOI: 10.1038/ncomms10804

A polybenzimidazole polymer supports the formation of gold nanoparticles with well-defined sizes on graphene.
Credit: International Institute for Carbon-Neutral Energy Research (I²CNER), Kyushu University

Research group develops new method for creating highly efficient gold nanoparticle catalysts for fuel cells

The successful future of fuel cells relies on improving the performance of the catalysts they use. Gold nanoparticles have been cited as an ideal solution, but creating a uniform, useful catalyst has proven elusive. However, a team of researchers at Kyushu University’s International Institute for Carbon-Neutral Energy Research (I2CNER) devised a method for using a new type of catalyst support.

In a potential breakthrough technology for fuel cells, a recently published article in Scientific Reports shows how wrapping a graphene support in a specially prepared polymer provides an ideal foundation for making uniform, highly active gold nanoparticle catalysts.

Fuel cells produce electricity directly from the separate oxidation of the fuel and the reduction of oxygen. The only by-product of the process is water, as fuel cells produce no greenhouse gases and are widely seen as essential for a clean-energy future.

However, the rate at which electricity can be produced in fuel cells is limited, especially by the oxygen reduction reaction (ORR), which must be catalyzed in practical applications. Although current platinum-based catalysts accelerate the reaction, their unhelpful propensity to also catalyze other reactions, and their sensitivity to poisoning by the reactants, limits their overall utility. Despite bulk gold being chemically inert, gold nanoparticles are surprisingly effective at catalyzing the oxygen reduction reaction without the drawbacks associated with their platinum counterparts.

Nevertheless, actually creating uniformly sized gold nanoparticle catalysts has proven problematic. Previous fabrication methods have produced catalysts with nanoparticle sizes that were too large or too widely distributed for practical use. Meanwhile, efforts to regulate the particle size tended to restrict the gold’s activity or make less-stable catalysts.

“Creating small, well-controlled particles meant that we needed to focus on particle nucleation and particle growth,” lead and corresponding author Tsuyohiko Fujigaya says. “By wrapping the support in the polybenzimidazole polymer we successfully developed with platinum, we created a much better support environment for the gold nanoparticles.”

The team also tested the performance of these novel catalyst structures. Their catalysts had the lowest overpotential ever reported for this type of reaction. “The overpotential is a bit like the size of the spark you need to start a fire,” coauthor Naotoshi Nakashima says. “Although we’re obviously pleased with the catalysts’ uniformity, the performance results show this really could be a leap forward for the ORR reaction and maybe fuel cells as well.”

The article “Growth and Deposition of Au Nanoclusters on Polymer-wrapped Graphene and Their Oxygen Reduction Activity” was published in Scientific Reports.


Story Source:

The above post is reprinted from materials provided by Kyushu University, I2CNER. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tsuyohiko Fujigaya, ChaeRin Kim, Yuki Hamasaki, Naotoshi Nakashima. Growth and Deposition of Au Nanoclusters on Polymer-wrapped Graphene and Their Oxygen Reduction Activity. Scientific Reports, 2016; 6: 21314 DOI:10.1038/srep21314

Drone for Trees 12970826404_59ff05e8a8_oDrones are used for various applications such as aero picturing, disaster recovery, and delivering. Despite attracting attention as a new growth area, the biggest problem of drones is its small battery capacity and limited flight time of less than an hour. A fuel cell developed by Prof. Gyeong Man Choi (Dept. of Materials Science and Engineering) and his research team at POSTECH can solve this problem.

 

Prof. Choi and his Ph.D. student Kun Joong Kim have developed a miniaturized solid oxide fuel cell (SOFC) to replace lithium-ion batteries in smartphones, laptops, drones, and other small electronic devices. Their results were published in the March edition of Scientific Reports, the sister journal of Nature.

Their achievement has been highly evaluated because it can be utilized, not only for a small fuel cell, but also for a large-capacity fuel cell that can be used for a vehicle.

The SOFC, referred to as a third-generation fuel cell, has been intensively studied since it has a simple structure and no problems with corrosion or loss of the electrolyte. This fuel cell converts hydrogen into electricity by oxygen-ion migration to fuel electrode through an oxide electrolyte. Typically, silicon has been used after lithography and etching as a supporting component of small oxide fuel cells. This design, however, has shown rapid degradation or poor durability due to thermal-expansion mismatch with the electrolyte, and thus, it cannot be used in actual devices that require fast On/Off.

The research team developed, for the first time in the world, a new technology that combines porous stainless steel, which is thermally and mechanically strong and highly stable to oxidation/reduction reactions, with thin-film electrolyte and electrodes of minimal heat capacity. Performance and durability were increased simultaneously. In addition, the fuel cells are made by a combination of tape casting-lamination-cofiring (TLC) techniques that are commercially viable for large scale SOFC.

The fuel cells exhibited a high power density of ~ 560 mW cm-2 at 550 oC. The research team expects this fuel cell may be suitable for portable electronic devices such as smartphones, laptops, and drones that require high power-density and quick on/off. They also expect to develop large and inexpensive fuel cells for a power source of next-generation automotive.

With this fuel cell, drones can fly more than one hour, and the team expects to have smartphones that charge only once a week.

###

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

 

Prof. Walter Mérida is working on fuel cells powered by hydrogen to allow us to replace fossil fuels with a truly zero-emission chemical fuel.

Moving away from fossil fuels like coal and oil are an important step in making our energy consumption more sustainable. Alternative sources include hydro, solar, and wind, but once electricity is generated, it needs to be used right away because we lack a reliable method to store large amounts of power. Prof. Walter Mérida, Director of the Clean Energy Research Centre at the University of British Columbia, is looking for ways to bypass fossil fuels by using electricity to generate hydrogen as a zero-emission chemical fuel.

The simplest possible chemical that you can imagine is hydrogen. It is the lightest element, the simplest element, and it’s one of the elements that you can make from electricity and water. So if you use electrolysis in the one hand and water in the other to produce a chemical fuel, you can really envision a truly zero emission transportation system.

This move is driven by our increased power needs for modern services and technologies. However, to make a real change, we need a better system. “The main driver for energy system evolution is not scarcity. We didn’t abandon the stone age due to the scarcity of stones. We abandoned it because there were better things to build things with. And in the case of fossil fuel – these transitions you have seen from wood, to coal, to oil – are due to quality and convenience; the fuels are much more convenient,” explains Mérida.
READ THE WHOLE STORY:
http://research2reality.com/videos/fu…

DOWNLOAD THE TRANSCRIPT:
http://research2reality.com/wp-conten…

Fuel Cell CArs Miraix250Image: Tiger Optics

Carbon dioxide, the gas most connected to recent global warming, represented about 82% of U.S. greenhouse gas emissions (GHGs) in 2013. Transportation accounted for 27% of those emissions, with more than 90% of U.S. transportation petroleum-based, according to the latest EPA report.

As world leaders strive to finalize a climate treaty in Paris this December, the push for carbon-free transportation gains ever-greater urgency. And President Barack Obama has pledged to reduce U.S. GHG emissions by 26 to 28% in 2025 from 2005 levels.

The state of California mandates a dramatic reduction in carbon emissions by 2020; to meet this goal, use of non-internal-combustion alternatives, including both hydrogen fuel cell and conventional electric vehicles, will be important. Currently, conventionally fueled cars and light trucks represent 62% of all GHG emissions in transportation, and control or capture of emissions on the vehicle isn’t yet technically feasible.

Use of clean-burning hydrogen can curb GHG emissions and reduce dependence on oil. With “zero tailpipe” emissions, hydrogen fuel cell electric vehicles (FCEVs) emit only water vapor, warm air and some hydrogen, which don’t diminish air quality. “However, depending on the method, production of hydrogen and electricity emit varying quantities of GHGs, so those production emissions weigh in the calculus,” says Randy Bramston-Cook, Principal at Lotus Consulting, provider of instrumentation packages.

Steam-reforming natural gas is currently the most affordable way to produce hydrogen. “Utilizing fuel from that process, a FCEV represents less than half the GHG emissions of a gasoline-powered car,” says Jerry Riddle, President of Tiger Optics LLC. “However, hydrogen can also be produced from renewable energy sources, such as biomass, wind and solar, which could reduce ‘well-to-wheel’ emissions to near zero.”

The importance of testing hydrogen
Today, automobile manufacturers are shifting from the development stage of fuels cells into full commercial production. Toyota’s Mirai is now reaching California markets. And there are both legal and pragmatic reasons to monitor the quality of the fuel for these vehicles, as safety can never be compromised.

“California law, for example, requires its Div. of Measurement Standards to establish and enforce quality standards for alternative engine fuels sold there,” says Bramston-Cook.

Hydrogen purity is critical to maintaining performance of these fuel cells, as trace contaminants from the production process or from leaks in transport and storage can shorten the fuel cell’s life. “Certainly the manufacturers of FCEVs want reliable fuel, because vehicle reliability is crucial to winning consumer confidence,” says Bramston-Cook. “Indeed, FCEV manufacturers are required in California to warranty the power train for 100,000 miles, highlighting the critical need for fuel quality.”

In response to the need for pure hydrogen, the Society of Automotive Engineers (SAE) have placed stringent standards on hydrogen fuel purity. In fact, the SAE’s Fuel Cell Standards Committee has three Work Groups responsible for setting standards for safety, performance and interface requirements of fuel cell systems in motor vehicles. One resulting protocol is SAE J2719, the commodity standard for hydrogen fuel quality.

The standard was first issued in 2005, and it was revised in 2008 and 2011 to recognize the progress made by fuel cell and automotive industries to determine and verify acceptable levels of hydrogen contaminants. Today, California has adopted SAE J2719, as has ISO internationally.

In July 2014, SAE published J2601 “Fueling Protocols for Light Duty Gaseous Hydrogen Surface Vehicles” noting the protocol was developed and verified over 13 years, moving from the laboratory “to the field with automaker hydrogen storage under extreme conditions on three continents with test tanks and vehicles.”

SAE said its “J2601 standard fueling” method will enable hydrogen stations to refuel FCEVs within three to five minutes.

Analytical Equipment to promote fuel cell use
Fuel cells using a proton exchange membrane (PEM) have been widely used for many decades. The critical requirement for FCEVs is to ensure fuel cell longevity and reliability by preserving the catalysts by avoiding contamination of the hydrogen fuel.

“With the commercial introduction of hydrogen FCEVs in California, hydrogen fuel will be regularly monitored by the state’s Dept. of Food and Agriculture, Div. of Measurement Standards,” says Bramston-Cook. “They have the authority to sample the fuel at the dispenser, test it for impurities and, if required, shut down the fueling station if the fuel isn’t compliant.”

With the SAE’s fuel standards in place, they have identified many contaminants that must be monitored at very low levels, pushing the capabilities of traditional analytical equipment. “At least seven of the over-a-dozen contaminants are effectively monitored by Cavity Ring-down Spectrometers (CRDS) supplied by Tiger Optics LLC, with advantages of being very specific to the analyte, sensitive enough to measure below the mandated levels, with response time rapid enough to allow fast throughput of samples,” says Riddle.

An “absolute” technique, CRDS is drift-free, meaning it doesn’t require external calibration. “This further distinguished CRDS, as many other technologies do require calibration, often using gases that are fossil-fuel-based,” says Riddle.

The future hydrogen FCEV
The future is bright for FCEVs which are capable of traveling 300 miles on a tank of hydrogen and refueling in under five minutes. However, the public must find hydrogen fuel readily available and reliable. With suitable public-private funding, construction of hydrogen fueling stations are underway.

“Assuring the fuel’s integrity is crucial because contaminants can harm the fuel cell,” says Bramston-Cook. ”In California, state regulators are adding a second Lotus Consulting hydrogen fuel analyzer system to test hydrogen fuel samples for a dozen or more destructive contaminants.”

“To supplement such definitive tests at state laboratories, stakeholders debate the feasibility of adding analyzers at each station to test for fewer, but likely, contaminants,” says Bramston-Cook. “However, low-cost, on-site technology for measuring all required impurities isn’t currently feasible.”

Adam Weber and Jeffrey Urban at ALS SAXS/WAXS Beamline 7.3.3.New projects for hydrogen storage and fuel cell performance aim to bring down cost of fuel cell electric vehicles.

With commitments from leading car and stationary-power manufacturers to hydrogen and fuel cell technologies and the first ever fuel cell electric vehicle to go on sale later this year, interest is once again swelling in this carbon-free technology. Now, thanks to several new projects from the U.S. Department of Energy’s (DOE) Fuel Cell Technologies Office, scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) will have an important role in accelerating innovation and commercialization of hydrogen and fuel cell technologies.

Berkeley Lab has been awarded $8 million for two new DOE research efforts, one to find new materials for hydrogen storage and another for optimizing fuel-cell performance and durability. In addition, Berkeley Lab is leading a range of other hydrogen and fuel cell research projects aimed at developing next-generation fuel cell and related energy-conversion technologies.

Adam Weber and Jeffrey Urban at ALS SAXS/WAXS Beamline 7.3.3.

“Berkeley Lab has had a strong fuel cell research program going back decades,” said scientist Adam Weber, who leads fuel cell research at Berkeley Lab. “With these new DOE consortiums, each national lab brings its core competences while synergistically leveraging each other. This way we’ll be able to push the state-of-the-art much faster and further than we could individually.”

Fuel cells are considered one of the most promising and fast-growing clean energy technologies. In 2014, about 50,000 fuel cell units were shipped worldwide, with a nearly 30 percent market growth every year since 2010. This year, Toyota’s Mirai will be the first fuel cell electric vehicle (FCEV) to be commercially available for sale in the U.S. Still, cost remains one of the biggest challenges to wider adoption.

The Fuel Cell—Consortium for Performance and Durability (FC-PAD) is led by Los Alamos National Laboratory and includes Argonne National Laboratory, Oak Ridge National Laboratory, and the National Renewable Energy Laboratory, with Weber serving as the consortium’s deputy director. Its goal is to improve and optimize polymer electrolyte membrane (PEM) fuel cells, which are used primarily for transportation, while reducing their cost. “If we can make individual cells more durable and perform better with less costly components or fewer of them, than you would drive down the cost of the vehicle,” Weber said.

Specifically one research focus of Weber’s work for FC-PAD will be trying to understand and optimize mass transport in the fuel cell, or the transport of reactants and products, such as hydrogen, oxygen, and water. Mass-transport issues can limit fuel-cell performance. “One of our core competences at Berkeley Lab is in mathematical modeling and advanced diagnostics, which we can use to study, explore, and describe the transport phenomena across length scales from the microstructural to macroscopic levels,” he said.

Like batteries, fuel cells use a chemical reaction to produce electricity. However fuel cells don’t need to be recharged; rather, they will produce electricity as long as fuel is supplied. In the case of a hydrogen fuel cell, hydrogen is the fuel, and it’s stored in a tank connected to the fuel cell.

Safe and cost-effective hydrogen storage is another challenge for FCEVs, one that the other DOE consortium, Hydrogen Materials—Advanced Research Consortium (HyMARC), seeks to address. HyMARC is led by Sandia National Laboratories and also includes Lawrence Livermore National Laboratory.

Jeff Urban, the HyMARC lead scientist for Berkeley Lab, noted the Lab’s strengths: “Berkeley Lab brings to the consortium a combination of innovation in H2 storage materials, surface and interface science, controlled nanoscale synthesis, world-class user facilities for characterizing nanoscale materials, and predictive materials genome capabilities.”

Researchers have two goals for hydrogen storage—greater storage density at lower pressure. Greater density will allow for greater vehicle driving range while lower pressure improves safety as well as efficiency.

Urban and his group have come up with novel ways to synthesize nanoscale metal hydrides to achieve extremely high hydrogen storage capacity. Yet the kinetics, or rate of chemical reactions, is one of the main challenges with this material. “HyMARC will allow us to further probe solid-solid interfaces in metal hydrides and evaluate microstructural engineering as a pathway to improved kinetics,” he said. “The unique combination of expertise spanning these consortia gives us a peerless network of close collaboration to surmount the fundamental scientific barriers underpinning some of these sticky challenges.”

Both of these consortiums are funded by DOE’s Fuel Cell Technologies Office, part of the Office of Energy Efficiency and Renewable Energy, and follow a similar model, where the core team consisting of the national labs will serve as a resource to industry and later also collaborate on innovative projects with universities and companies.

Another research focus is in catalysts, the subject of a collaboration between Berkeley Lab materials scientist Peidong Yang and scientists at Argonne National Laboratory. Last year they reported discovery of a new class of bimetallic nanoframe catalysts using platinum and nickel that are significantly more efficient and far less expensive than the best platinum catalysts used in today’s fuel cells.

Finally Berkeley Lab last month joined several other national labs as well as dozens of companies and other institutions in signing onto H2USA, a public-private partnership whose mission is “is to address hurdles to establishing hydrogen fueling infrastructure, enabling the large scale adoption of fuel cell electric vehicles.” Infrastructure is one of the critical challenges to wider hydrogen technology adoption, and one in which California has made a strong commitment.

“I’m very bullish on hydrogen. It’s clean and carbon-free, and it’s definitely a very integral part of the future energy economy,” Weber said. “Is it a very near-term drop-in replacement technology? No, I think it’s a little bit longer term, although we have commercial products like the Mirai available today. Like any new technology we have to go down the cost and manufacturing curves. As we bring in new ideas, concepts, and materials, I think we can easily bring down the cost.”

# # #

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Updated:

Argone NL 090115 114727

 

Scientists at the U.S. Department of Energy’s Argonne National Laboratory have developed a new fuel cell catalyst using earthly abundant materials with performance that is comparable to platinum in laboratory tests. If commercially viable, the new catalyst could replace platinum in electric cars powered by fuel cells instead of batteries, which would greatly extend the range of electric vehicles and eliminate the need for recharging.

Fuel cells generate electricity by using hydrogen from a fuel tank with oxygen in the air. The only waste product emitted to the environment is water.

But fuel cells are expensive, largely because they depend on the precious metal platinum to cause the hydrogen-oxygen reaction. Argonne’s fuel cell catalyst replaces much of the platinum with a non-precious metal.

“Platinum represents about 50 percent of the cost of a fuel cell stack, so replacing or reducing platinum is essential to lowering the price of fuel cell vehicles,” said Di-Jia Liu, who led the Argonne team. Their catalyst replaces all the platinum in the fuel cell’s cathode, which usually requires four times as much platinum as the anode, and their new electrode design also optimizes the flow of protons and electrons within the fuel cell and the removal of water.

Many automakers see sales of vehicles powered by fuel cells as eventually outpacing battery-powered electric vehicles for several reasons: fuel-cell vehicles emit only water, can travel over 300 miles between fill ups, can be refilled quickly and place no burden on the electrical grid because they don’t need recharging.

Since both technologies lack refilling or recharging infrastructures and are expensive, both are currently suitable mainly for early adopters and use in corporate fleets. But this may change, if advances made by Argonne researchers can be realized in commercial fuel-cell vehicles.

Fuel cells generate electricity to propel vehicles through electrochemical reactions between onboard hydrogen fuel and oxygen in the air. Hydrogen molecules are stripped of electrons at the fuel cell’s anode, becoming protons that travel through a polymer electrolyte membrane to the cathode, where they react with electrons and oxygen to form water.

“In order for a fuel cell to work,” Liu explained, “the catalyst must be densely packed with active sites that are uniformly distributed throughout the cathode and directly connected to the arriving protons and electrons, while maintaining easy access to oxygen. The catalyst should also have an architecture that can readily channel away the produced water.” No conventional method for preparing carbon-based platinum or non-precious metal catalysts can meet all these criteria, Liu added.

In a paper recently published in the Proceedings of the National Academy of Sciences of the United States of America, the team led by Liu reported on a new method of synthesizing a highly efficient, nanofibrous non-precious metal catalyst by electrospinning a polymer solution containing a mixture of ferrous organometallics and metal-organic frameworks. Following thermal activation, the new catalyst delivered an unprecedented level of catalytic activity in actual fuel cell tests.

“The new catalyst offers a unique carbon nano-network architecture made of microporous nanofibers interconnected through a macroporous framework,” Liu explained. “Not only do the active sites inside the micropores within individual fibers catalyze chemical reactions effectively, but the macroporous voids between the fibers transport oxygen and water efficiently to and from the active sites. The continuous nano-networks also make the catalytic electrode highly conductive in charge transfer.”

The paper, “Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network,” was published online on August 10, 2015.

The research was supported by the U.S. Department of Energy’s Office of Science and the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. With employees from more than 60 nations, Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. Argonne is supported by the Office of Science of the U.S. Department of Energy.

The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Recent Posts

Categories

Search