Great things from small things

Blog Archive

Home
Filter by: Nano-Batteries
Page 2

Waterloo Sodium Battery 052915 b146db0e-62b3-4d0b-8c2f-ff5709169fddChemists at the University of Waterloo have discovered the key reaction that takes place in sodium-air batteries that could pave the way for development of the so-called holy grail of electrochemical energy storage.

 

Researchers from the Waterloo Institute for Nanotechnology, led by Professor Linda Nazar who holds the Canada Research Chair in Solid State Energy Materials, have described a key mediation pathway that explains why sodium-oxygen batteries are more energy efficient compared with their lithium-oxygen counterparts.

Understanding how sodium–oxygen batteries work has implications for developing the more powerful lithium–oxygen battery, which is seen as the holy grail of electrochemical energy storage.  Their results appear in the journal Nature Chemistry. “Our new understanding brings together a lot of different, disconnected bits of a puzzle that have allowed us to assemble the full picture,” says Nazar, a Chemistry professor in the Faculty of Science. “These findings will change the way we think about non-aqueous metal-oxygen batteries.”

Oxygen is reduced at the surface of the cathode to form superoxide and reacts with trace water to form soluble HO2. The latter undergoes metathesis with Na+, driven by the free energy of formation of crystalline NaO2, to form cubic nuclei that crystallize from solution. Growth of the NaO2 from solution to form micrometre-sized cubes occurs via epitaxial growth promoted by phase-transfer catalysis of the superoxide from solution to the solid.
Sodium-oxygen batteries are considered by many to be a particularly promising metal-oxygen battery combination.  Although less energy dense than lithium–oxygen cells, they can be recharged with more than 93 per cent efficiency and are cheap enough for large-scale electrical grid storage. The key lies in Nazar’s group discovery of the so-called proton phase transfer catalyst. By isolating its role in the battery’s discharge and recharge reactions, Nazar and colleagues were not only able to boost the battery’s capacity, they achieved a near-perfect recharge of the cell. When the researchers eliminated the catalyst from the system, they found the battery no longer worked.
Waterloo Sodium Battery 052915 b146db0e-62b3-4d0b-8c2f-ff5709169fdd

Oxygen is reduced at the surface of the cathode to form superoxide and reacts with trace water to form soluble HO2. The latter undergoes metathesis with Na+, driven by the free energy of formation of crystalline NaO2, to form cubic nuclei that crystallize from solution. Growth of the NaO2 from solution to form micrometre-sized cubes occurs via epitaxial growth promoted by phase-transfer catalysis of the superoxide from solution to the solid.

“These findings will change the way we think about non-aqueous metal-oxygen batteries.” – Professor Linda Nazar Canada Research Chair in Solid-State Energy Materials University of Waterloo

Unlike the traditional solid-state battery design, a metal-oxygen battery uses a gas cathode that takes oxygen and combines it with a metal such as sodium or lithium to form a metal oxide, storing electrons in the process. Applying an electric current reverses the reaction and reverts the metal to its original form.
In the case of the sodium–oxygen cell, the proton phase catalyst transfers the newly formed sodium superoxide (NaO2) entities to solution where they nucleate into well-defined nanocrystals to grow the discharge product as micron-sized cubes.The dimensions of the initially formed NaO2 are critical; theoretical calculations from a group at MIT has separately shown that NaO2 is energetically preferred over sodium peroxide, Na2O2 at the nanoscale.

When the battery is recharged, these NaO2 cubes readily dissociate, with the reverse reaction facilitated once again by the proton phase catalyst.   Chemistry says that the proton phase catalyst could work similarly with lithium-oxygen. However, the lithium superoxide (LiO2) entities are too unstable and convert immediately to lithium peroxide (Li2O2). Once Li2O2 forms, the catalyst cannot facilitate the reverse reaction, as the forward and reverse reactions are no longer the same.

So, in order to achieve progress on lithium–oxygen systems, researchers need to find an additional redox mediator to charge the cell efficiently. ”We are investigating redox mediators as well as exploring new opportunities for sodium–oxygen batteries that this research has inspired,” said Nazar. “Lithium–oxygen and sodium-oxygen batteries have a very promising future, but their development must take into account the role of how high capacity – and reversibility – can be scientifically achieved.”   Postdoctoral research associate Chun Xia along with doctoral students Robert Black, Russel Fernandes, and Brian Adams co-authored the paper.
The ecoENERGY Innovation Initiative program of Natural Resources Canada, and the Natural Sciences and Engineering Research Council (NSERC) of Canada funded the project.

semiliquidba 052215

 

A new semiliquid battery developed by researchers at The University of Texas at Austin has exhibited encouraging early results, encompassing many of the features desired in a state-of-the-art energy-storage device. In particular, the new battery has a working voltage similar to that of a lithium-ion battery, a power density comparable to that of a supercapacitor, and it can maintain its good performance even when being charged and discharged at very high rates.

The researchers, led by Assistant Professor Guihua Yu, along with Yu Ding and Yu Zhao, at UT Austin, have published their paper on the new membrane-free, semiliquid in a recent issue of Nano Letters. The researchers explain that the battery is considered “semiliquid” because it uses a liquid ferrocene electrolyte, a liquid cathode, and a solid lithium anode.

“The greatest significance of our work is that we have designed a semiliquid battery based on a new chemistry,” Yu told Phys.org. “The battery shows excellent rate capability that can be fully charged or discharged almost within one minute while maintaining good energy efficiency and reasonable energy density, representing a promising prototype liquid redox battery with both high energy density and for energy storage.”

The battery is designed for applications in two of the biggest areas of : hybrid electric vehicles and energy storage for renewable energy resources.

As shown in the figure above, the battery’s high power density (1400 W/L) and good energy density (40 Wh/L) put it in the uniquely favorable position of combining a power density that is as high as that of current supercapacitors with an energy density on par with those of state-of-the-art redox flow batteries and lead-acid batteries, though slightly lower than that of lithium-ion batteries. This combination is especially attractive for electric vehicles, where the power density corresponds to top speed and the energy density to the vehicle’s range per charge.

The researchers also report in their paper that the has a high capacity (137 mAh/g) and a high capacity retention of 80% for 500 cycles.

The structure and working principle of the new ferrocene-based, membrane-free semiliquid battery, along with an experimental demonstration showing that the battery’s power output can light a 9 x 9 LED array. Credit: Ding, et al. ©2015 American Chemical Society

The researchers attribute the battery’s good performance in large part to its liquid electrode design that enables its high rate capability, which is basically a measure of how fast the battery operates. The ions can move through the liquid battery very rapidly compared to in a solid battery, and the redox reactions in which the electrons are transferred between electrodes also occur at very high rates in this particular battery. For comparison, the values used to measure these rates (the diffusion coefficient and the reaction constant) are orders of magnitude greater in the new battery than in most conventional flow batteries.

Although the battery looks very promising so far, the researchers note that more work still needs to be done, in particular regarding the lithium anode.

“The potential weakness of this battery is the lithium anode in terms of long-term stability and safety,” Yu said. “More advanced lithium anode protection is required to fully suppress self-discharge. We suppose that other metals like zinc and magnesium may also function as the anode for such a battery as long as the electrolyte compatibility is resolved. We also expect that other organometallic compounds with multi-valence-state metal centers (redox centers) may also function as the anode, which eventually would make the battery fully liquid.”

In the future, the researchers plan to test the long-term durability of the battery, especially its lithium anode, under realistic operating conditions. In addition, the researchers want to find a way to increase the solubility of ferrocene in order to further increase the to compete with current lithium-ion batteries while maintaining its very high power density.

Explore further: Beyond the lithium ion—a significant step toward a better performing battery

More information: Yu Ding, et al. “A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery.” Nano Letters. DOI: 10.1021/acs.nanolett.5b01224

Read more at: http://phys.org/news/2015-05-semiliquid-battery-competitive-li-ion-batteries.html#jCp

Tesla Home 050815 _1x519_0  Tesla launches a stationary battery aimed at companies with variable electricity rates and homes with solar panels.

Seeking to expand its business beyond electric vehicles, Tesla Motors will sell stationary batteries for residential, commercial, and utility use under a new brand, Tesla Energy.

Tesla is launching the home battery business partly because it’s already making vehicle batteries—and as a result it can benefit from the economies of scale that come from making both. Another reason is that the market for storage is expected to grow in concert with the use of solar power. Tesla needs both electric vehicles and solar power to boom if it hopes to fulfill the projected output from a vast $5 billion battery “gigafactory” it’s building in Nevada.

“The obvious problem with solar power is that the sun does not shine at night,” Tesla CEO Elon Musk said at the unveiling of the new batteries at the company’s design studio in Hawthorne, California, yesterday. “We need to store the energy that is generated during the day so you can use it at night.”

A number of solar companies now offer batteries to accompany their solar panels (see “Solar Power, and Somewhere to Store It”). Although just a tenth of a percent of U.S. homes now get power from rooftop solar panels combined with energy storage, such systems could account for 3 percent of homes by 2018, according to Greentech Media Research.

Tesla’s residential battery, called Powerwall, will be available in several months and will come in two sizes, a seven-kilowatt-hour battery system that costs $3,000 and a slightly larger 10-kilowatt-hour system for $3,500. The larger battery would keep an average-sized home running for a day. It is unclear what the cost of installation would be.

Tesla expects that many sales will come from commercial customers who pay a variable rate of electricity over the course of a day based on demand. Such customers already see significant reductions in their energy bills by drawing on stored electricity during periods of peak energy demand.

In the near term, the market for home energy storage will depend on how states regulate homeowners’ ability to buy and sell electricity. Net metering, currently available in 43 states, allows residential customers to sell excess generation back to their utility company at retail rates. The policies are being challenged by utility companies that say it undermines their ability to recoup grid infrastructure costs. But as long as net metering continues, consumers will have little need to buy an energy storage system because they can sell the excess solar power they generate rather than store it, says Jay Stein, an analyst with energy consulting company E Source. “I don’t see any financial payoff for them to buy batteries,” he says.

Most utilities that offer net metering, however, also allow residential customers to buy and sell electricity at rates that vary throughout the day based on demand. Battery storage would allow such people to maximize the value of the electricity they sell back to the utility.

“There are some arbitrage values emerging,” says Karl Rábago, executive director of the Pace Energy and Climate Center in White Plains, New York. “If I could export selectively, using a storage device, I might beget higher value for my generation.”

Home energy storage will make more sense in the years to come. Residential and commercial solar-plus-storage systems will offer a clear cost advantage over electricity from the grid throughout the United States by 2030, according to a recent report by the Rocky Mountain Institute, an energy research and consulting group.

Tesla’s Nevada gigafactory, which it’s building with Panasonic, will have an annual production capacity of 35 gigawatt-hours by 2020, more than all the lithium-ion batteries produced globally in 2013.tesla-motors-gigafactory-statistics-from-feb-2014-presentation_100457895_l

Such a large investment in what is still a niche market is risky, but Tesla claims that the new factory will cut battery costs by 30 percent when it begins operations, as early as 2016. Tesla’s biggest challenge will likely be filling enough orders for the output. By 2020, the plant will be able to produce enough batteries for half a million electric vehicles per year. Last year, Tesla sold around 20,000 cars.


Recent Posts

Categories

Search

Nano Enabled Super Capacitors and Batteries for the Future of Energy Storage

Follow Us on Twitter @Genesisnanotech


Could not authenticate you.