Great things from small things

Blog Archive

Filter by: Nano Supercapacitor

sunvault-phone case slide-7EDMONTON, ALBERTA – SUNVAULT ENERGY INC. (“Sunvault”) announced today that in conjunction with the Edison Power Company, have completed a Smartphone Battery Case that is built initially for the IPhone. Smartphone case designs for major brands such as LG and Samsung and other Smartphone manufactured devices will follow shortly. The Company will be submitting this prototype for certification and verification in order to start to fulfill the demand that exists for this product line.

The Battery Case will provide approximately 5000 mAh (milliamp hours) of energy to the first prototype IPhone model. The Battery Case prototype will be the best performing battery case on the market because of one of its most compelling features.

That feature being that the case will charge in roughly 3 minutes and will provide approximately 200% of additional power for most smartphones that are in the average 2400 mAh battery range. As displays on Smartphones become larger and usage becomes more and more prevalent, increasing energy to these devices will be widely accepted by the pent up demand for better energy solutions by the 2 Billion Smartphone users worldwide.

In addition to the fast charging, the case will not experience or generate any significant heat, and will have the unique attributes of both a battery and Supercapacitor. Additional attributes will include superior cycles that will go far beyond the Lithium Ion spec of 500 cycles of charge / discharge before battery requires replacement. It will be considerably lighter than current products on the market and will form the perfect marriage between Smartphone requirements of protection and esthetics of a case, combined with energy release and quick recharge that is necessary for today’s enjoyment of these devices. The Company will start by focusing on the top Smartphone lines, which include: Samsung, Apple IPhone, Lenovo, LG, Huawei, Xiaomi and Sony.

Edison Power Company will be launching a KICKSTARTER campaign for all Smartphone users in the near future. Smartphone users will want to stay tuned for details of the campaign that will be further described just prior to launch. This will be a unique opportunity for Smartphone users to be first in line to receive the 5000 mAh battery case.

sunvault-solar panels slide-4


McMaster Cellulose 151006132027_1_540x360

McMaster University: Summary: New work demonstrates an improved three-dimensional energy storage device constructed by trapping functional nanoparticles within the walls of a foam-like structure made of nanocellulose. The foam is made in one step and can be used to produce more sustainable capacitor devices with higher power density and faster charging abilities compared to rechargeable batteries. This development paves the way towards the production of lightweight, flexible, and high-power electronics for application in wearable devices, portable power sources and hybrid vehicles.

McMaster Engineering researchers Emily Cranston and Igor Zhitomirsky are turning trees into energy storage devices capable of powering everything from a smart watch to a hybrid car.

The scientists are using cellulose, an organic compound found in plants, bacteria, algae and trees, to build more efficient and longer-lasting energy storage devices or supercapacitors. This development paves the way toward the production of lightweight, flexible, and high-power electronics, such as wearable devices, portable power supplies and hybrid and electric vehicles.

“Ultimately the goal of this research is to find ways to power current and future technology with efficiency and in a sustainable way,” says Cranston, whose joint research was recently published in Advanced Materials. “This means anticipating future technology needs and relying on materials that are more environmentally friendly and not based on depleting resources.

Cellulose offers the advantages of high strength and flexibility for many advanced applications; of particular interest are nanocellulose-based materials. The work by Cranston, an assistant chemical engineering professor, and Zhitomirsky, a materials science and engineering professor, demonstrates an improved three-dimensional energy storage device constructed by trapping functional nanoparticles within the walls of a nanocellulose foam.

The foam is made in a simplified and fast one-step process. The type of nanocellulose used is called cellulose nanocrystals and looks like uncooked long-grain rice but with nanometer-dimensions. In these new devices, the ‘rice grains’ have been glued together at random points forming a mesh-like structure with lots of open space, hence the extremely lightweight nature of the material. This can be used to produce more sustainable capacitor devices with higher power density and faster charging abilities compared to rechargeable batteries.

Lightweight and high-power density capacitors are of particular interest for the development of hybrid and electric vehicles. The fast-charging devices allow for significant energy saving, because they can accumulate energy during braking and release it during acceleration.

“I believe that the best results can be obtained when researchers combine their expertise,” Zhitomirsky says. “Emily is an amazing research partner. I have been deeply impressed by her enthusiasm, remarkable ability to organize team work and generate new ideas.”

Story Source:

The above post is reprinted from materials provided by McMaster University. Note: Materials may be edited for content and length.

Journal Reference:

  1. Xuan Yang, Kaiyuan Shi, Igor Zhitomirsky, Emily D. Cranston. Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Advanced Materials, 2015; DOI: 10.1002/adma.201502284

Rice Nanoporus Battery 102315 untitledPhoto: Jeff Fitlow

Researchers at Rice University in Houston, Texas, have developed a nanoporous material that has the energy density (the amount of energy stored per unit mass) of an electrochemical battery and the power density (the maximum amount of power that can be supplied per unit mass) of a supercapacitor. It’s important to note that the energy storage device enabled by the material is not claimed to be either of these types of energy storage devices.

The research community has wearied of claims that some new nanomaterial enables a “supercapacitor,” when in fact the energy storage device is not a supercapacitor at all, but a battery. However, in this case, the Rice University researchers, led by James Tour, who is known for having increased the storage capacity of lithium-ion (Li-ion) batteries with graphene, don’t make any claims that the device they created is a supercapacitor. Instead it is described as an electrochemical capacitor with nanoporous nickel-fluoride electrodes layered around a solid electrolyte that is flexible and relatively easy to scale up for manufacturing.Rice logo_rice3

The issue of appropriate nomenclature aside, the reported performance figures for this energy storage material are very attractive. In the Journal of the American Chemical Society (“Flexible Three-Dimensional Nanoporous Metal-Based Energy Devices“),  the researchers report energy density of 384 watt-hours per kilogram (Wh/kg), and power density of 112 kilowatts per kilogram (kW/kg).

To give some context to these numbers, a typical energy density for a Li-ion battery is 200Wh/kg, whereas commercially available supercapacitors store around 5- to 25 Wh/kg and research prototype supercapacitors have made claims of anywhere from 85 to 164 Wh/kg. In terms of power density, the numbers for the new nanoporous material is in line with those of supercapacitors, which range from 10 to 100 kW/kg—far higher than the 0.005 to 0.4kW/kg that batteries can deliver.

“The numbers are exceedingly high in the power that it can deliver, and it’s a very simple method to make high-powered systems,” Tour said in a press release. “We’re already talking with companies interested in commercializing this.”

To make the battery-supercapacitor hybrid, the Rice team deposited a nickel layer on a backing material. They then etched the nickel layer to create pores five nanometers in diameter. The result is high surface area for storing ions. After removing the backing, the nickel-based electrode material is wrapped around a solid electrolyte of potassium hyrodroxide in polyvinyl alcohol. In testing, the researchers found that there was no degradation of the pore structure after 10 000 charge-discharge cycles, or any significant degradation of the electrode-electrolyte interface.

“Compared with a lithium-ion device, the structure is quite simple and safe,” said Yang Yang, lead author of the paper, in the press release. “It behaves like a battery but the structure is that of a supercapacitor. If we use it as a supercapacitor, we can charge quickly at a high current rate and discharge it in a very short time. But for other applications, we find we can set it up to charge more slowly and to discharge slowly like a battery.”

With the device’s flexibility and high charge-up rate, it’s possible to imagine this storage device powering flexible mobile devices. However, charging rates for the battery/supercapacitor will be limited by the typical 200-amp 240V single-phase residential service, which is only capable of providing (absent any other load) only 48 kW.

Recent Posts