Great things from small things

Blog Archive

Home
Filter by: Nanotechnology

• HDIAC utilizes expertise and knowledge from government agencies, research institutions, laboratories, industry and academia on topics relevant to the DoD and other government entities to solve the government’s toughest scientific and technical problems

• Develop two State-of-the-Art Reports each year on a pressing topic related to the Defense community within HDIAC focus areasMilitary Nano IV 0

• Manipulation of matter on a scale of 1 to 100 nanometers (nm) in at least one dimension to create new structures and materials

• The modification of surfaces is fundamental to engineering and technological innovation, because almost everything about a product or device can be affected by its surface functionality and interaction with the environment.

 

 

 

Read More …

PDF Documents for HDIAC Webinar Presentation

  
Published January 2017

As it turns out, Tesla, and its battery partner Panasonic, started production of cells for qualification at the plant in December, but today, it confirmed the start of “mass production” of the new battery cell, which will enable several of Tesla’s new products, including the Model 3.

The new cell is called ‘2170’ because it’s 21mm by 70mm. It’s thicker and taller than the previous cell that Tesla developed with Panasonic, which was in an ‘18650’ cell format.

Tesla CEO Elon Musk has been boasting about the new cell over the past few month. He said that it’s the “highest energy density cell in the world and also the cheapest”.

A battery that can be charged in seconds, has a large capacity and lasts ten to twelve years? Certainly, many have wanted such a thing. Now the FastStorageBW II project – which includes Fraunhofer – is working on making it a reality. Fraunhofer researchers are using pre-production to optimize large-scale production and ensure it follows the principles of Industrie 4.0 from the outset.

Imagine you’ve had a hectic day and then, to cap it all, you find that the battery of your electric vehicle is virtually empty. This means you’ll have to take a long break while it charges fully. It’s a completely different story with capacitors, which charge in seconds. However, they have a different drawback: they store very little energy.electric cars images

In the FastStorageBW II project, funded by the Baden-Württemberg Ministry of Economic Affairs, researchers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, together with colleagues from the battery manufacturer VARTA AG and other partners, are developing a powerful hybrid storage system that combines the advantages of lithium-ion batteries and .

“The PowerCaps have a specific capacity as high as lead batteries, a long life of ten to twelve years, and charge in a matter of seconds like a supercapacitor,” explains Joachim Montnacher, Head of the Energy business unit at Fraunhofer IPA. What’s more, PowerCaps can operate at temperatures of up to 85 degree Celsius. They withstand a hundred times more charge cycles than conventional battery systems and retain their charge over several weeks without any significant losses due to self-discharge.

Elon+Musk+cVLpwWp3rxJmAlso Read About: Supercapacitor breakthrough suggests EVs could charge in seconds but with a trade-off

“Supercapacitors may be providing an alternative to electric-car batteries sooner than expected, according to a new research study. Currently, supercapacitors can charge and discharge rapidly over very large numbers of cycles, but their poor energy density per kilogram —- at just one twentieth of existing battery technology — means that they can’t compete with batteries in most applications. That’s about to change, say researchers from the University of Surrey and University of Bristol in conjunction with Augmented Optics.

Large-scale production with minimum risk

The Fraunhofer IPA researchers’ main concern is with manufacturing: to set up new battery production, it is essential to implement the relevant process knowledge in the best possible way.

After all, it costs millions of euros to build a complete manufacturing unit. “We make it possible for battery manufacturers to install an intermediate step – a small-scale production of sorts – between laboratory production and large-scale production,” says Montnacher. “This way, we can create ideal conditions for large-scale production, optimize processes and ensure production follows the principles of Industrie 4.0 from the outset. Because in the end, that will give companies a competitive advantage.” Another benefit is that this cuts the time it takes to ramp up production by more than 50 percent.

For this innovative small-scale production setup, researchers cleverly combine certain production sequences. However, not all systems are connected to each other – at least, as far as the hardware is concerned. More often, it is an employee that carries the batches from one machine to the next. Ultimately, it is about developing a comprehensive understanding of the process, not about producing the greatest number of in the shortest amount of time. For example, this means clarifying questions such as if the desired quality can be reproduced. The systems are designed as flexibly as possible so that they can be used for different production variations.

Making large-scale production compatible with Industrie 4.0

As far as software is concerned, the systems are thoroughly connected. Like process clusters, they are also equipped with numerous sensors, which show the clusters what data to capture for each of the process steps. They communicate with one another and store the results in a cloud. Researchers and entrepreneurs can then use this data to quickly analyze which factors influence the quality of the product – Does it have Industrie 4.0 capability? Were the right sensors selected? Do they deliver the desired data? Where are adjustments required?

Fraunhofer IPA is also applying its expertise beyond the area of production technology: The scientists are developing business models for the marketing of cells, they are analyzing resource availability, and they are optimizing the subsequent recycling of PowerCaps.

Explore further: Virtual twin controls production

Provided by: Fraunhofer-Gesellschaft

Watch a YouTube Video in ‘Next Generation’ Energy-Dense Si-Nanowire Batteries

A new company Tenka Energy, LLC ™ has been formed to exploit and commercialize the Next Generation Super-Capacitors and Batteries. The opportunity is based on Nanoporous-Nickel Flexible Thin-Form, Scalable Super Capacitors and Si-Nanowire Battery Technologies with Exclusive IP Licensing Rights from Rice University.

… Problem 1: Current capacitors and batteries being supplied to the relevant markets lack the sustainable power density, discharge and recharge cycle and warranty life. Combined with a weight/ size challenge and the lack of a ‘flexible form factor’, existing solutions lack the ability to scale and manufacture at Low Cost, to satisfy the identified industries’ need for solutions that provide commercial viability & performance.

Solution: For Marine & Drone Batteries – Medical Devices

  • High Energy Density = 2X More Time on the Water; 2X Flight Time for Drones
  • Simplified Manufacturing = Lower Costs
  • Simple Electrode Architecture = Flex Form Factor (10X Energy Density Factor)
  • Flexible Form = Dramatically Less Weight and Better Weight Distribution
  • Easy to Scale Technology

To Read the Full Article Click on the Link Below:

  

 

Energy Storage: New Si-Nanowire Battery for Applications in Marine and Drone Battery Markets: w/Video

            

 

Image: UCF

Technology I: University of Central Florida

Leaving your phone plugged in for hours could become a thing of the past, thanks to a new type of battery technology that charges in seconds and lasts for over a week.

Watch the Video

While it probably won’t be commercially available for a years, the researchers said it has the potential to be used in phones, wearables and electric vehicles.

“If they were to replace the batteries with these supercapacitors, you could charge your mobile phone in a few seconds and you wouldn’t need to charge it again for over a week,” said Nitin Choudhary, a UCF postdoctoral associate, who conducted much of the research, published in the academic journal ACS Nano.

How does it work?

Unlike conventional batteries, supercapacitors store electricity statically on their surface which means they can charge and deliver energy rapidly. But supercapacitors have a major shortcoming: they need large surface areas in order to hold lots of energy.

To overcome the problem, the researchers developed supercapacitors built with millions of nano-wires and shells made from two-dimensional materials only a few atoms thick, which allows for super-fast charging. Their prototype is only about the size of a fingernail.

“For small electronic devices, our materials are surpassing the conventional ones worldwide in terms of energy density, power density and cyclic stability,” Choudhary said.

Cyclic stability refers to how many times a battery can be charged, drained and recharged before it starts to degrade. For lithium-ion batteries, this is typically fewer than 1,500 times.

Supercapacitors with two-dimensional materials can be recharged a few thousand times. But the researchers say their prototype still works like new even after being recharged 30,000 times.

 

wearable-textiles-100616-0414_powdes_ti_f1Those that use the new materials could be used in phones, tablets and other electronic devices, as well as electric vehicles. And because they’re flexible, it could mean a significant development for wearables.

 

 

 

 

 

 

 

 

Technology II: Rice University

391f84fd-6427-4c06-9fb4-3d3c8a433f41A new company has been formed (with exclusive licensing rights) to exploit and commercialize the Next Generation Super-Capacitors and Batteries. The opportunity is based on Nanoporous-Nickel Flexible Thin-form, Scalable Super Capacitors and Si-Nanowire Battery Technologies, developed by Rice University and Dr. James M. Tour, PhD – named “One of the Fifty (50) most influential scientists in the World today” is the inventor, patent holder and early stage developer. tourportrait2015-300

tenka-flex-med-082616-picture1Identified Key Markets and Commercial Applications 

  • Medical Devices and Wearable Electronics
  • Drone/Marine Batteries and Power Banks
  • Powered Smart Cards and Motor Cycle/ EV Batteries
  • Sensors & Power Units for the iOT (Internet of Things) [Flexible Form, Energy Dense]  

 

The Coming Power Needs of the iOTiot-picture1

  • The IoT is populated with billions of tiny devices.
  • They’re smart.
  • They’re cheap.
  • They’re mobile.
  • They need to communicate.
  • Their numbers growing at 20%-30%/Year.

The iOT is Hungry for POWER! All this demands supercapacitors that can pack a lot of affordable power in very small volumes …Ten times more than today’s best supercapacitors can provide.

 

iot-img_0008

 

Highly Scalable – Energy Dense – Flexible Form – Rapid Charge

 Problem 1: Current capacitors and batteries being supplied to the relevant markets lack the sustainable power density, discharge and recharge cycle, warranty life combined with a ‘flexible form factor’ to scale and satisfy the identified industry need for commercial viability & performance.

tenka-smartcard-picture1Solution I: (Minimal Value Product) Tenka is currently providing full, functional Super Capacitor prototypes to an initial customer in the Digital Powered Smart Card industry and has received two (2) phased Contingent Purchase Orders during the First Year Operating Cycle for 120,000 Units and 1,200,000 Units respectively.

Solution II: For Drone/ Marine Batteries – Power Banks & Medical Devices

  • Double the current ‘Time Aloft’ (1 hour+)drone1
  • Reduces operating costs
  • Marine batteries – Less weight, longer life, flex form
  • Provides Fast Recharging,  Extended Life Warranty.
  • Full -battery prototypes being developed

Small batteries will be produced first for Powered Digital Smart Cards (In addition to the MVP Super Caps) solving packaging before scaling up drone battery operations. Technical risks are mainly associated with packaging and scaling.

The Operational Plan is to take full advantage of the gained ‘know how’ (Trade Secrets and Processes) of scaling and packaging solutions developed for the Powered Digital Smart Card and the iOT, to facilitate the roll-out of these additional Application Opportunities. Leveraging gained knowledge from operations is projected to significantly increase margins and profitability. We will begin where the Economies of Scale and Entry Point make sense (cents)!

tenka-mission-082516-picture1

“We are building and Energy Storage Company starting Small & Growing Big!”

Watch the YouTube Video

Creating a Life-Saving, Blood-Repellent Super Material – Revolutionizing Medical Implants: Colorado State University

Goodbye Rejection – Implanted medical devices like stents, catheters, and titanium rods are essential, life-saving tools for patients around the world. Still, having a foreign object in the human body does pose its own risks – chiefly, having the body reject the object or increasing the risk of dangerous blood clots. A new collaboration between two distinct scientific disciplines is working toward making those risks a concern of the past.

Biomedical engineers and materials scientists from Colorado State University (CSU) …. 

Read More: “Creating A Life-Saving Super Material

 

New organic-inorganic material creates more flexible, efficient technologies ~ For Solar Cells, Thermo-electric Devices and LED’s

Florida State University College of Engineering Assistant Professor Shangchao Lin has published a new paper in the journal ACS Nano that predicts how an organic-inorganic hybrid material called organometal halide perovskites could be more mechanically flexible than existing silicon and other inorganic materials used for , and light-emitting diodes. 

Read More: An organic-inorganic hybrid material may be the future for more efficient technologies that can generate electricity from either light or heat or devices that emit light from electricity.

 

MIT: The Internet of Things ~ A RoadMap to a Connected World And  … The Super-Capacitors and Batteries Needed to Power ‘The Internet of Things”

 

What if every vehicle, home appliance, heating system and light switch were connected to the Internet? Today, that’s not such a stretch of the imagination.

Modern cars, for instance, already have hundreds of sensors and multiple computers connected over an internal network. And that’s just one example of the 6.4 billion connected “things” in use worldwide this year, according to research by Gartner Inc. DHL and Cisco Systems offer even higher estimates—their 2015 Trend Report sets the current number of connected devices at about 15 billion, amidst industry expectations that the tally will increase to 50 billion by 2020.

Read More: MIT: The Internet of Things ~ A RoadMap to a Connected World And … The Super-Capacitors and Batteries Needed to Power ‘The Internet of Things”

 

 

Published on Oct 10, 2016

Recently, researchers at the National Renewable Energy Laboratory wanted to know, how well does NREL’s hydrogen infrastructure support fueling multiple fuel cell electric vehicles (FCEVs) for a day trip to the Rocky Mountains?car-fc-3-nrel-download

The answer-great! NREL staff took FCEVs on a trip to demonstrate real-world performance and range in high-altitude conditions. To start the trip, drivers filled three cars at NREL’s hydrogen fueling station. The cars made a 175-mile loop crossing two 11,000+ foot mountain passes on the way. Back at NREL, the cars were filled up with hydrogen in ~5 minutes and ready to go again. Learn more at http://www.nrel.gov/hydrogen.

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

img_0742-1

Solar Fuel Cell U of T energy_cycleRead More on Nano Enabled Fuel Cell Technologies for many more Energy Applications: Genesis Nanotechnology Fuel Cell Articles & Videos

graphite-mining-africa_2007_rwh_0893-1-edit** Special to the Washington Post

The batteries that power our high-tech lifestyle are built using materials extracted in dirty, often life-threatening conditions.

If you have a cell phone, laptop, a hybrid car, or an electric vehicle, you may want to sit down. This may hurt.

You have probably heard of blood diamonds and conflict minerals. Maybe you’ve even read up a bit on how big consumer tech companies are trying (and, in some cases, being forced by governments) to sort out where the materials that go into their gadgets come from. But stories about “supply chains,” “globalization,” and “poor working conditions” can seem a world away, or just plain academic.

In a sweeping, heartbreaking series, the Washington Post is making sure it hits home.

 

Take the example of Yu Yuan, a farmer who lives near a graphite factory in northeastern China. In a video, he swipes at shimmering grime accumulated in his window sill and points at a barren cornfield.

 

The crops turn black with graphite dust he says, and don’t grow properly. He and his wife worry about the air they’re breathing and their water is undrinkable, polluted by chemicals dumped from the graphite plant. “There is nothing here once the factory is done damaging this place,” he says.

 

dirty-lithiumbattery_0

Workers in Lubumbashi, Democratic Republic of the Congo, tend to an oven that processes slag from the region’s cobalt and copper-rich ores.

Over two pieces so far, the Post has traced the path of first cobalt and then graphite as they make their way from mines to factories and ultimately into our hands as the cathodes and anodes, respectively, for lithium-ion batteries.
Each story is a remarkable blend of globe-spanning investigative journalism, business reporting, and an appeal to us to confront the consequences of owning the devices that power our high-tech lifestyles.
While graphite is mined and processed mostly in China, a huge amount of cobalt comes from mines in the Democratic Republic of the Congo, where “artisanal” miners sometimes dig through the floor of their own houses in search of ore. Mines collapse frequently. Injuries and death are commonplace.

 
Once extracted, the materials end up in Asia, where companies you’ve probably never heard of turn them into battery parts. The largest battery makers in the world, including Samsung SDI, LG Chem, and Panasonic, then purchase the components and turn them into batteries that go into phones, computers, and cars. (article continued below)

 

A “New Way” to Power Our World?

tenka-growing-plants-082616-picture1Read (Watch the YouTube Video Below) About a New Energy Storage Company ~ Making Energy Dense, Flexible Form, Rapid Charge/ Re-Charge Super Capacitors and Batteries for Medical Devices, Drone Batteries, Power Banks, Motorcycle and EV Batteries, developed from a Rice University Technology using ‘Nanoporous Nickle’ and ‘Si Nano Wires.

Tenka Energy, LLC ~ “Starting Small and Growing BIG”

 

(article continued) Lithium batteries are prized for being light and having a high energy density compared to other battery chemistries. The modern smartphone would be difficult to imagine without a lithium battery as its power supply. They help power hybrid cars, and the small but fast-growing fleet of all-electric vehicles wouldn’t exist without them.

 
Interest in electric cars, in particular, is fueled by claims that the vehicles are clean and good for the environment. That may be true in the countries where they are mostly sold. But when we consider the bigger picture, the reality is something else altogether.

Read More: MIT Review – August 2016

Startups with novel chemistries tend to falter before they reach full production.

Earlier this year, Ellen Williams, the director of ARPA-E, the U.S. Department of Energy’s advanced research program for alternative energy, made headlines when she told the Guardiannewspaper that “We have reached some holy grails in batteries.”

Despite very promising results from the 75-odd energy-storage research projects that ARPA-E funds, however, the grail of compact, low-cost energy storage remains elusive.

A number of startups are closer to producing devices that are economical, safe, compact, and energy-dense enough to store energy at a cost of less than $100 a kilowatt-hour. Energy storage at that price would have a galvanic effect, overcoming the problem of powering a 24/7 grid with renewable energy that’s available only when the wind blows or the sun shines, and making electric vehicles lighter and less expensive.

Illustration by Federico Jordan

But those batteries are not being commercialized at anywhere near the pace needed to hasten the shift from fossil fuels to renewables. Even Tesla CEO Elon Musk, hardly one to underplay the promise of new technology, has been forced to admit that, for now, the electric-car maker is engaged in a gradual slog of enhancements to its existing lithium-ion batteries, not a big leap forward.

In fact, many researchers believe energy storage will have to take an entirely new chemistry and new physical form, beyond the lithium-ion batteries that over the last decade have shoved aside competing technologies in consumer electronics, electric vehicles, and grid-scale storage systems. In May the DOE held a symposium entitled “Beyond Lithium-Ion.” The fact that it was the ninth annual edition of the event underscored the technological challenges of making that step.

Qichao Hu, the founder of SolidEnergy Systems, has developed a lithium-metal battery (which has a metallic anode, rather than the graphite material used for the anode in traditional lithium-ion batteries) that offers dramatically improved energy density over today’s devices (see“Better Lithium Batteries to Get a Test Flight”). The decade-long process of developing the new system highlighted one of the main hurdles in battery advancement: “In terms of moving from an idea to a product,” says Hu, “it’s hard for batteries, because when you improve one aspect, you compromise other aspects.”

Added to this is the fact that energy storage research has a multiplicity problem: there are so many technologies, from foam batteries to flow batteries to exotic chemistries, that no one clear winner is attracting most of the funding and research activity.

According to a recent analysis of more than $4 billion in investments in energy storage by Lux Research, startups developing “next-generation” batteries—i.e., beyond lithium-ion—averaged just $40 million in funding over eight years. Tesla’s investment in its Gigafactory, which will produce lithium-ion batteries, will total around $5 billion. That huge investment gap is hard to overcome.

“It will cost you $500 million to set up a small manufacturing line and do all the minutiae of research you need to do to make the product,” says Gerd Ceder, a professor of materials science at the University of California, Berkeley, who heads a research group investigating novel battery chemistries. Automakers, he points out, may test new battery systems for years before making a purchase decision. It’s hard to invest $500 million in manufacturing when your company has $5 million in funding a year.

Even if new battery makers manage to bring novel technologies to market, they face a dangerous period of ramping up production and finding buyers. Both Leyden Energy and A123 Systems failed after developing promising new systems, as their cash needs climbed and demand failed to meet expectations. Two other startups, Seeo and Sakti3, were acquired before they reached mass production and significant revenues, for prices below what their early-stage investors probably expected.

Meanwhile, the Big Three battery producers, Samsung, LG, and Panasonic, are less interested in new chemistries and radical departures in battery technology than they are in gradual improvements to their existing products. And innovative battery startups face one major problem they don’t like to mention: lithium-ion batteries, first developed in the late 1970s, keep getting better.
Read more: Why We Still Don’t Have Better Batteries The Washington Post

gnt-new-thumbnail-large-2016

Genesis Nanotechnology, Inc. 

Facebook 042616.jpgFollow and ‘Like’ Us on Facebook: https://www.facebook.com/GenesisNanoTech/

 

Twitter Icon 042616.jpgFollow Us On Twitter: https://twitter.com/GenesisNanoTech

 

LinkedIn IconA 042316.jpg“Join the Conversation” on Our LinkedIn ‘Nano Network’ Group:https://www.linkedin.com/groups/3935461

 

gnt-new-thumbnail-2016Connect To Our Website: http://genesisnanotech.com/

 

YouTube small 050516Watch Our YouTube Video: https://youtu.be/Y1618kgUSXI

 

gnt-new-thumbnail-2016Follow Our ‘Top Ten’ Blog: “Great Things from Small Things”: https://genesisnanotech.wordpress.com/

Contact with Your Comments – We Love Hearing from You!

smartclothing-100616

Credit: American Chemical Society

Batteries in smart phones and other portable electronics often die at inopportune times. Carrying a spare battery is one solution. As an alternative, researchers have tried to create fibers to incorporate in clothing that would power these devices. However, many of these fibers can’t withstand clothing manufacturing, especially weaving and cutting.

Now, in the journal ACS Nano, scientists report the first fibers suitable for weaving into tailorable textiles that can capture and release solar energy.

To collect solar power, Wenjie Mai, Xing Fan and colleagues created two different types of fibers. One contained titanium or a manganese-coated polymer along with zinc oxide, a dye and an electrolyte. These fibers were then interlaced with copper-coated polymer wires to create the solar cell section of the textile. To store power, the researchers developed a second type of fiber. This one was made of titanium, , a thin carbon shell to prevent oxidation and an electrolyte. These were woven with cotton yarn.wearable-textiles-100616-0414_powdes_ti_f1

When combined, the new materials formed a flexible textile that the team could cut and tailor into a “smart garment” that was fully charged by sunlight. The researchers say the clothing could potentially power small electronics including tablets and phones.(Article Continues Below – After Tenka Energy Story)

 

391f84fd-6427-4c06-9fb4-3d3c8a433f41

Read About (Watch the YouTube Video) 

              The Tenka Energy Story

Tenka Energy, LLC  is developing and commercializing the Next Generation of Super-Capacitors andBatteries, providing the High-Energy-Density,in Flexible-Thin-Form with Rapid Charge/ Recharge Cycles with  Extended Life that is required and in high demand from a“power starved world”. The opportunity is based on a Nanoporous-Nickel Flexible Thin-form technology that is  easily scaled, from Rice University. Applications: Powered Smart Cards, Wearable Electronics, Drone Batteries, Medical Devices, Motorcycle and EV Batteries – just to name a few!

 

(Article Continued) Explore further: New fabric uses sun and wind to power devices

More information: Zhisheng Chai et al. Tailorable and Wearable Textile Devices for Solar Energy Harvesting and Simultaneous Storage, ACS Nano(2016). DOI: 10.1021/acsnano.6b05293

Abstract
The pursuit of harmonic combination of technology and fashion intrinsically points to the development of smart garments. Herein, we present an all-solid tailorable energy textile possessing integrated function of simultaneous solar energy harvesting and storage, and we call it tailorable textile device. Our technique makes it possible to tailor the multifunctional textile into any designed shape without impairing its performance and produce stylish smart energy garments for wearable self-powering system with enhanced user experience and more room for fashion design.

The “threads” (fiber electrodes) featuring tailorability and knittability can be large-scale fabricated and then woven into energy textiles. The fiber supercapacitor with merits of tailorability, ultrafast charging capability, and ultrahigh bending-resistance is used as the energy storage module, while an all-solid dye-sensitized solar cell textile is used as the solar energy harvesting module. Our textile sample can be fully charged to 1.2 V in 17 s by self-harvesting solar energy and fully discharged in 78 s at a discharge current density of 0.1 mA.

gnt-new-thumbnail-large-2016

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”


1 2 3 4 28
Recent Posts

Categories

Search