Great things from small things

Blog Archive

Home
Filter by: Research

Intl Womens Day 1 large_CWf4dIfmFR5LkqgN_CELM1k_QlPhl5L4m3wTSpxa3oA

*** From the World Economic Forum (WEF)

Five videos to watch on International Women’s Day

As we celebrate International Women’s Day on 8 March, here are five videos that highlight the struggle for gender parity.

I. The Global Gender Gap Report

The Global Gender Gap Index ranks over 140 economies according to how well they are leveraging their female talent pool, based on economic, educational, health-based and political indicators. With a decade of data, the 2015 edition of the Global Gender Gap Report– first published in 2006 – reveals patterns of change around the world.

II. Davos 2016 – Progress Towards Parity

At the Annual Meeting 2016 in Davos, an all-star panel gathered to discuss the challenges facing the journey towards gender parity. What are the opportunities to achieve progress towards parity as the demand on workforces and societies rapidly shift?

Panelists:
· Melinda Gates, Co-Chair, Bill & Melinda Gates Foundation, USA.
· Jonas Prising, Chairman and Chief Executive Officer, ManpowerGroup, USA.
· Sheryl Sandberg, Chief Operating Officer and Member of the Board, Facebook, USA.
· Justin Trudeau, Prime Minister of Canada.
· Zhang Xin, Chief Executive Officer and Co-Founder, SOHO China, People’s Republic of China.

III. China 2015 – Parity Equals Performance

Moderated by Joe Palca, Science Correspondent at NPR, this session held at the Annual Meeting of the New Champions 2015 in Dalian, People’s Republic of China, addresses the gender gap in science and technology. Are companies missing out on female-led innovation in the digital economy?

Panelists include:
– Masako Egawa, Professor, Hitotsubashi University, Japan; Global Agenda Council on Japan
– Maria Pinelli, Global Vice-Chair, Strategic Growth Markets, EY, United Kingdom
– Jun Qin, Chairman, Tsinghua Holding Technological Innovation Co., People’s Republic of China; Young Global Leader
– Nina Tandon, President and Chief Executive Officer, EpiBone, USA

IV. Emma Watson

UN Women Goodwill Ambassador, Emma Watson, delivered a stirring speech encouraging world and corporate leaders to take action for gender equality during the kickoff of a HeForShe programme launch during the World Economic Forum Annual Meeting in Davos on January 23rd, 2015.

V. Davos 2016: The Gender Impact on the Fourth Industrial Revolution

This issue briefing examined the degree and breadth of gender gaps across key industries and possible remedies to consider for each.
Speakers: – Mara Swan, Executive Vice-President, Global Strategy and Talent, ManpowerGroup, USA. – Theresa Whitmarsh, Executive Director, Washington State Investment Board, USA. – Saadia Zahidi, Head of Employment and Gender Initiatives, Member of the Executive Committee, World Economic Forum.

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Watch Our YouTube Video

Follow Our ‘Top Ten’ Blog: “Great Things from Small Things”

Follow Us on Twitter: @Genesisnanotech

Follow and ‘Like’ Us on Facebook

Connect with Our Website

‘Join the Conversation’ at Our LinkedIn ‘Nano Network’ Group

Nano Israeil Conference 2016Cornell University professor Richard Robinson says Jewish State is ‘ahead of the curve’ when it comes to nanotechnology.

One day soon, a start-up somewhere – possibly in Israel – will come up with a system to manufacture precisely-formed nanoparticles that, when joined with other particles, will change the way electronics, clothing, computers and almost everything else can be used.

One day, but not yet, according to Richard Robinson, a visiting scholar at Hebrew University’s Institute of Chemistry. Based at Cornell University, Robinson is in Israel to do research in the area of nanotechnology, where scientists manipulate very tiny atomic particles to create surprising and unique effects that are far different than anything observed in physics until now.

“We know a lot about the principles of nanotechnology now, but there is still a lot to do at the research stage, which is one reason why nanotech hasn’t yet made its presence known to a large extent in the greater society,” Robinson told The Times of Israel . “Nevertheless nanotechnology is already having a major impact in certain applications, like lighting.”

In fact, one of the first commercially successful nano-based products to emerge came from the very Hebrew University lab where Robinson is doing research. Using unique quantum materials, Qlight developed semiconductor nanocrystals that can emit and provide extra brilliance to light, such as enhancing the color of display screens.

Last year the company was acquired by Merck, the German chemical and technology company. Qlight’s technology, said Merck CEO Karl-Ludwig Kley, is “far superior to anything currently on the market, and that will help us retain and expand our position as market leader.”

There will likely be many more such announcements and pronouncements in the future, and many of them are set to be based on technology developed in Israel, said Robinson. “Israel is ahead of the curve on nanotechnology research,” said Robinson.

And there’s plenty more research that needs to be done. “Over the past 20 years or so we have essentially been rewriting the textbooks on physics, because the laws that apply to ‘normal’ particles do not apply to nano-sized particles,” he added.

In other words, certain things happen when five nanometer-sized particles are combined with six nanometer-sized particles. “We’re still observing, categorizing and recording the reactions of these particles sizes with each other and others, in different kinds of materials, and their combinations,” said Robinson.

At home in Cornell, Robinson does a lot of work in materials, controlling their size, shape, composition and surfaces, and assembling the resulting building blocks into functional architectures. Among the applications Robinson’s lab is targeting are new materials for printable electronics and electrocatalysis. His group is also pioneering a new method to probe phonon transport in nanostructures.

On practical example of how nanotech will affect energy is to allow for a much more efficient production method for solar energy. In a solar energy system, the sun’s rays hit photovaltic cells that capture the energy and convert it into direct current (DC) electricity, which is then converted to alternating current (AC), for use in home electric systems or for transfer to the grid. But it turns out that the PV cells being used don’t capture as much of the sun’s rays as they can because of fluctuations in the wavelength of the rays due to time of day or time of year; only about 25% of the rays are captured on average.

PV cells are designed to capture the sun at its strongest in midday, but they can’t capture rays at other times of the day. Using nanomaterials that respond to specific wavelengths PV technology can be much more efficient, tripling the usable “bounty” from the sun, said Robinson.

Eventually, said Robinson, nanotech will live up to the hype that has surrounded it for the past two decades.

“The manufacturing process for nanoparticles is not yet precise. In order for nanotech to be fully commercialized, we need a way to produced nanoparticles on a mass basis with the right size needed for each application,” Robinson said. “We’re not there yet, but it’s on the way – and with all the nanotech research here in Israel, it may just be an Israeli start-up that develops it.”

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotech on Twitter

Genesisnanotech on Facebook

Genesis Nanotechnology – Follow Our Blog

Check Out Our Website


Recent Posts

Categories

Search