Great things from small things

Blog Archive

Home
Filter by: Solar

Credit: CC0 Public Domain


Researchers have developed a solar paint that can absorb water vapour and split it to generate hydrogen – the cleanest source of energy.

The paint contains a newly developed compound that acts like silica gel, which is used in sachets to absorb moisture and keep food, medicines and electronics fresh and dry.

But unlike silica gel, the new material, synthetic molybdenum-sulphide, also acts as a semi-conductor and catalyses the splitting of water atoms into hydrogen and oxygen.

Lead researcher Dr Torben Daeneke, from RMIT University in Melbourne, Australia, said: “We found that mixing the compound with titanium oxide particles leads to a sunlight-absorbing paint that produces hydrogen fuel from solar energy and moist air.

“Titanium oxide is the white pigment that is already commonly used in wall paint, meaning that the simple addition of the new material can convert a brick wall into energy harvesting and fuel production real estate.

“Our new development has a big range of advantages,” he said. “There’s no need for clean or filtered water to feed the system. Any place that has water vapour in the air, even remote areas far from water, can produce fuel.”

His colleague, Distinguished Professor Kourosh Kalantar-zadeh, said hydrogen was the cleanest source of energy and could be used in fuel cells as well as conventional combustion engines as an alternative to fossil fuels.

“This system can also be used in very dry but hot climates near oceans. The sea water is evaporated by the hot sunlight and the vapour can then be absorbed to produce fuel.

“This is an extraordinary concept – making fuel from the sun and water vapour in the air.”

 

More information: Torben Daeneke et al, Surface Water Dependent Properties of Sulfur-Rich Molybdenum Sulfides:
Electrolyteless Gas Phase Water Splitting, ACS Nano (2017). DOI: 10.1021/acsnano.7b01632

Provided by: RMIT University

*** Bill Gates: Original Post From gatesnotes.com  

The sun was out in full force the fall morning I arrived at Caltech to visit Professor Nate Lewis’s research laboratory. Temperatures in southern California had soared to 20 degrees above normal, prompting the National Weather Service to issue warnings for extreme fire danger and heat-related illnesses.

The weather was a fitting introduction to what I had come to see inside Nate’s lab—how we might be able to tap the sun’s tremendous energy to make fuels to power cars, trucks, ships, and airplanes.

Stepping into the lab cluttered with computer screens, jars of chemicals, beakers, and other equipment, Nate handed me a pair of safety goggles and offered some advice for what I was about to see. “Everything we do is simple in the end, even though there’s lots of complicated stuff,” he said.

What’s simple is the idea behind all of his team’s research: The sun is the most reliable, plentiful source of renewable energy we have. In fact, more energy from the sun hits the Earth in one hour than humans use in an entire year. If we can find cheap and efficient ways to tap just a fraction of its power, we will go a long way toward finding a clean, affordable, and reliable energy source for the future.

We are all familiar with solar panels, which convert sunlight into electricity. As solar panel costs continue to fall, it’s been encouraging to see how they are becoming a growing source of clean energy around the world. Of course, there’s one major challenge of solar power. The sun sets each night and there are cloudy days. That’s why we need to find efficient ways to store the energy from sunlight so it’s available on demand. 

Batteries are one solution. Even better would be a solar fuel. Fuels have a much higher energy density than batteries, making it far easier to use for storage and transportation. For example, one ton of gasoline stores the same amount of energy as 60 tons of batteries. That’s why, barring a major breakthrough in battery technology, it’s hard to imagine flying from Seattle to Tokyo on a plug-in airplane. Solar Twist download

I’ve written before about the need for an energy miracle to halt climate change and provide access to electricity to millions of the poorest families who live without it. Making solar fuel would be one of those miracles. It would solve the energy storage problem for when the sun isn’t shining. And it would provide an easy-to-use power source for our existing transportation infrastructure. We could continue to drive the cars we have now. Instead of running on fossil fuels from the ground, they would be powered by fuel made from sunlight. And because it wouldn’t contribute additional greenhouses gases to the atmosphere, it would be carbon neutral. 

Imagining such a future is tantalizing. Realizing it will require a lot of hard work. No one knows if there’s a practical way to turn sunlight into fuel. Thanks to the U.S. Department of Energy, Nate and a group of other researchers around the U.S. are receiving research support to find out if it is possible.

We live in a time when new discoveries and innovations are so commonplace that it’s easy to take the cutting-edge research I saw at Caltech for granted. But most breakthroughs that improve our lives—from new health interventions to new clean energy ideas—get their start as government-sponsored research like Nate’s. If successful, that research leads to new innovations, that spawn new industries, that create new jobs, that spur economic growth. It’s impossible to overemphasize the importance of government support in this process. Without it, human progress would not come as far as it has.

tenka-growing-plants-082616-picture1Nate and his team are still at the first stage of this process. But they have reason to be optimistic about what lies ahead. After all, turning sunlight into chemical energy is what plants do every day. Through the process of photosynthesis, plants combine sunlight, water, and carbon dioxide to store solar energy in chemical bonds. At Nate’s lab, his team is working with the same ingredients. The difference is that they need to figure out how to do it even better and beat nature at its own game.

“We want to create a solar fuel inspired by what nature does, in the same way that man built aircraft inspired by birds that fly,” Nate said. “But you don’t build an airplane out of feathers. And we’re not going to build an artificial photosynthetic system out of chlorophylls and living systems, because we can do better than that.”

One of Nate’s students showed me how light can be used to split water into oxygen and hydrogen—a critical first step in the path to solar fuels. The next step would involve combining hydrogen with carbon dioxide to make fuels. Using current technologies, however, it is too costly to produce a fuel from sunlight. To make it cheaper, much more research needs to be done to understand the materials and systems that could create a dependable source of solar fuel.hydrogen-earth-150x150

One idea his team is working on is a kind of artificial turf made of plastic cells that could be easily rolled out to capture sunlight to make fuel. Each plastic cell would contain water, light absorbers, and a catalyst. The catalyst helps accelerate the chemical reactions so each cell can produce hydrogen or carbon-based fuels more efficiently. Unfortunately, the best catalysts are among the rarest and most expensive elements, like platinum. A key focus of Nate’s research is finding other catalysts that are not only effective and durable, but also economical.

Nate’s interest in clean energy research started during the oil crisis in the 1970s, when he waited for hours in gas lines with his dad. He says he knew then that he wanted to dedicate his life to energy research. Now, he is helping to train a new generation of scientists to help solve our world’s energy challenge. Seeing the number of young people working in Nate’s lab was inspiring. The pace of innovation for them is now much faster than ever before. “We do experiments now in a day that would once take a year or an entire Ph.D. thesis to do,” Nate said.

Still, I believe we should be doing a lot more. We need thousands of scientists following all paths that might lead us to a clean energy future. That’s why a group of investors and I recently launched Breakthrough Energy Ventures, a fund that will invest more than $1 billion in scientific discoveries that have the potential to deliver cheap and reliable clean energy to the world.

While we won’t be filling up our cars with solar fuels next week or next year, Nate’s team has already made valuable contributions to our understanding of how we might achieve this bold goal. With increased government and private sector support, we will make it possible for them to move ahead with their research at full speed.

This originally appeared on gatesnotes.com.

Creating a Life-Saving, Blood-Repellent Super Material – Revolutionizing Medical Implants: Colorado State University

Goodbye Rejection – Implanted medical devices like stents, catheters, and titanium rods are essential, life-saving tools for patients around the world. Still, having a foreign object in the human body does pose its own risks – chiefly, having the body reject the object or increasing the risk of dangerous blood clots. A new collaboration between two distinct scientific disciplines is working toward making those risks a concern of the past.

Biomedical engineers and materials scientists from Colorado State University (CSU) …. 

Read More: “Creating A Life-Saving Super Material

 

New organic-inorganic material creates more flexible, efficient technologies ~ For Solar Cells, Thermo-electric Devices and LED’s

Florida State University College of Engineering Assistant Professor Shangchao Lin has published a new paper in the journal ACS Nano that predicts how an organic-inorganic hybrid material called organometal halide perovskites could be more mechanically flexible than existing silicon and other inorganic materials used for , and light-emitting diodes. 

Read More: An organic-inorganic hybrid material may be the future for more efficient technologies that can generate electricity from either light or heat or devices that emit light from electricity.

 

MIT: The Internet of Things ~ A RoadMap to a Connected World And  … The Super-Capacitors and Batteries Needed to Power ‘The Internet of Things”

 

What if every vehicle, home appliance, heating system and light switch were connected to the Internet? Today, that’s not such a stretch of the imagination.

Modern cars, for instance, already have hundreds of sensors and multiple computers connected over an internal network. And that’s just one example of the 6.4 billion connected “things” in use worldwide this year, according to research by Gartner Inc. DHL and Cisco Systems offer even higher estimates—their 2015 Trend Report sets the current number of connected devices at about 15 billion, amidst industry expectations that the tally will increase to 50 billion by 2020.

Read More: MIT: The Internet of Things ~ A RoadMap to a Connected World And … The Super-Capacitors and Batteries Needed to Power ‘The Internet of Things”

 

 

The University Institute for Advanced Materials Research at the Universitat Jaume I (UJI) has participated in the European Project Sunflower, whose objective has been the development of organic photovoltaic materials less toxic and viable for industrial production.

A consortium of 17 research and business institutions has carried out this European project in the field of nanotechnology for four years and with an overall budget of 14.2 million euros, with funding of 10.1 million euros from the Seventh Framework Programme of the European Commission.

An introduction to Sunflower

 

Researchers at Sunflower have carried out several studies, among the most successful of which there are the design of an organic photovoltaic cell that can be printed and, consequently, has great versatility. In short, “we can assure that, thanks to these works, progress has been made in the achievement of solar cells with a good performance, low cost and very interesting architectural characteristics”, states the director of the University Institute for Advanced Materials Research (INAM) Juan Bisquert.

The goals of Sunflower were very ambitious, according to Antonio Guerrero, researcher at the Department of Physics integrated in the INAM, since it was intended “not only to improve the stability and efficiency of the photovoltaic materials, but also to reduce their costs of production”.

In fact, according to Guerrero, “the processes for making the leap from the laboratory to the industrial scale have been improved because, among others, non-halogenated solvents have been used that are compatible with industrial production methods and that considerably reduce the toxic loading of halogenates”.

“The involvement of our institute in these projects has a great interest because one of our priority lines of research is the new materials to develop renewable energies,” says Bisquert, who is also professor of Applied Physics. In addition, these consortia involve the work of academia and industry. According to the researcher, “the transfer of knowledge to society is favoured and, in this case, we demonstrate that organic materials investigated for twenty years are already close to become viable technologies”.

Change of use of plastic materials

The participation of UJI researchers at Sunflower has focused on “improving the aspect of chemical reactivity of materials or structural compatibility”, says Germà García, professor of Applied Physics and member of INAM.

“We have worked to move from the concepts of inorganic electronics to photovoltaic cells to the part of organic electronics,” he adds. The researchers wanted to take advantage of the faculties of absorption and conduction of plastic materials and to verify its capacity of solar production, an unusual use because normally they are used as an electrical insulation.

At UJI laboratories, they have studied the organic materials, very complex devices because they have up to eight nanometric layers. “We have made advanced electrical measurements to see where the energy losses were and thus to inform producers of materials and devices in order to improve the stability and efficiency of solar cells,” explains Guerrero.

Solar energy in everyday objects

“The potential applications of organic photovoltaic technology (OPV) are numerous, ranging from mobile consumer electronics to architecture,” says the project coordinator Giovanni Nisato, from the Swiss Centre for Electronics and Microtechnology (CSEM).

“Thanks to the results we have obtained, printed organic photovoltaics will become part of our daily lives, and will allow us to use renewable energy and respect the environment with a positive impact on our quality of life,” according to Nisato.

The European Sunflower project has been developed over 48 months with the main objective of extending the life and cost-efficiency of organic photovoltaic technology through better process control and understanding of materials. In addition, in the opinion of those responsible, the results of this research could double the share of renewable energy in its energy matrix, from 14% in 2012 to 27-30% by 2030. In fact, Sunflower has facilitated a significant increase in the use of solar energy incorporated in everyday objects.

The Sunflower consortium consists of 17 partners from across Europe: CSEM (Switzerland), DuPont Teijin Films UK Ltd (UK), Amcor Flexibles Kreuzlingen AG (Switzerland), Agfa-Gevaert NV (Belgium), Fluxim AG (Switzerland), University of Antwerp (Belgium), SAES Getters SpA (Italy), Consiglio Nazionale delle Ricerche-ISMN-Bologna (Italy), Hochschule für Life Sciences FHNW (Switzerland), Chalmers Tekniska Hoegskola AB (Sweden), Fraunhofer Institut der angewandten Forschung zur Foerderung @EV (Germany), Linköpings Universitet (Sweden), Universitat Jaume I (Spain), Genes’Ink (France), National Centre for Scientific Research (France), Belectric OPV GmbH (Germany) and Merck KGaA (Germany).

Meanwhile, the main lines of research at the INAM focus on new types of materials for clean energy devices, solar cells based on low cost compounds, such as perovskite and other organic compounds. Furthermore, INAM studies the production of fuels from sunlight, breaking water molecules and producing hydrogen and other catalytic materials in the chemical aspect, all of great importance in the context of international research.

Source: Ruvid

Rectenna Naval Optical 150928122542_1_540x360

 

A new kind of nanoscale rectenna (half antenna and half rectifier) can convert solar and infrared into electricity, plus be tuned to nearly any other frequency as a detector.

Right now efficiency is only one percent, but professor Baratunde Cola and colleagues at the Georgia Institute of Technology (Georgia Tech, Atlanta) convincingly argue that they can achieve 40 percent broad spectrum efficiency (double that of silicon and more even than multi-junction gallium arsenide) at a one-tenth of the cost of conventional solar cells (and with an upper limit of 90 percent efficiency for single wavelength conversion).

It is well suited for mass production, according to Cola. It works by growing fields of carbon nanotubes vertically, the length of which roughly matches the wavelength of the energy source (one micron for solar), capping the carbon nanotubes with an insulating dielectric (aluminum oxide on the tethered end of the nanotube bundles), then growing a low-work function metal (calcium/aluminum) on the dielectric and voila–a rectenna with a two electron-volt potential that collects sunlight and converts it to direct current (DC).

“Our process uses three simple steps: grow a large array of nanotube bundles vertically; coat one end with dielectric; then deposit another layer of metal,” Cola told EE Times. “In effect we are using one end of the nanotube as a part of a super-fast metal-insulator-metal tunnel diode, making mass production potentially very inexpensive up to 10-times cheaper than crystalline silicon cells.”

For commercialization, billions or even trillions of carbon-nanotube bundles could be grown side-by-side, ramping up the power output into the megaWatt range, after optimization for higher efficiency.

“We still have a lot of work to do to lower contact resistance which will improve the impedance match between the antenna and diode, thus raising efficiency,” Cola told us.”Our proof-of-concept was tuned to the near-infrared. We used infrared-, solar- and green laser-light and got efficiencies of less than one percent, but what was key to our demo was we showed our computer model matched our experimental results, giving us the confidence that we can improve the efficiency up to 40 percent in just a few years.”

For the future, Cola’s group has a three tiered goal–first develop sensor applications that don’t require high efficiencies, second to get the efficiency to 20 percent for harvesting waste heat in the infrared spectrum, then start replacing standard solar cells with 40 percent efficient panels in the visible spectrum. The team is also seeking suitable flexible substrates for applications that require bending.

Rectenna Naval Optical 150928122542_1_540x360

 

Schematic of the components making up the optical rectenna–carbon nanotubes capped with a metal-oxide-metal tunneling diode. (Credit: Thomas Bougher)
(Source: Georgia Tech)

 

Nature Nanotechnology – A carbon nanotube optical rectenna

An optical rectenna—a device that directly converts free-propagating electromagnetic waves at optical frequencies to direct current—was first proposed over 40 years ago, yet this concept has not been demonstrated experimentally due to fabrication challenges at the nanoscale. Realizing an optical rectenna requires that an antenna be coupled to a diode that operates on the order of 1 pHz (switching speed on the order of 1 fs).

Diodes operating at these frequencies are feasible if their capacitance is on the order of a few attofarads but they remain extremely difficult to fabricate and to reliably couple to a nanoscale antenna. Here we demonstrate an optical rectenna by engineering metal–insulator–metal tunnel diodes, with a junction capacitance of ∼2 aF, at the tip of vertically aligned multiwalled carbon nanotubes (∼10 nm in diameter), which act as the antenna. Upon irradiation with visible and infrared light, we measure a d.c. open-circuit voltage and a short-circuit current that appear to be due to a rectification process (we account for a very small but quantifiable contribution from thermal effects). In contrast to recent reports of photodetection based on hot electron decay in a plasmonic nanoscale antenna a coherent optical antenna field appears to be rectified directly in our devices, consistent with rectenna theory. Finally, power rectification is observed under simulated solar illumination, and there is no detectable change in diode performance after numerous current–voltage scans between 5 and 77 °C, indicating a potential for robust operation.

 

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology, Inc. ~ “Great Things from Small Things”

Watch Our YouTube Video

Follow Our ‘Top Ten’ Blog: “Great Things from Small Things”

Follow Us on Twitter: @Genesisnanotech

Follow and ‘Like’ Us on Facebook

Connect with Our Website

‘Join the Conversation’ at Our LinkedIn ‘Nano Network’ Group

 

Nano Cones 56f91c4556dea

A team of scientists at Royal Melbourne Institute of Technology in Australia has announced the development of a nanostructure material made of what they are calling nanocones—it is a type of nanomaterial that can be added to boost the efficiency of photovoltaics by increasing their light absorbing abilities. In their paper published in the journal Science Advances, the team describes the new material, how it works, and their hopes for its use in a wide variety of photovoltaic applications.

The new cone structured material’s positive attributes come about due to an ultrahigh refractive index—each cone is made of a type of material that acts inside as an insulator and outside as a conductor—under a microscope the material looks like a mass of bullets stood up on end atop a flat base. It, like other topological insulators, exploits oscillations that occur as a result of changes in the concentration of electrons that come about when the material is struck by photons. Each cone has a metal shell coating and a core that is based on a dielectric—a material made with them would be able to provide superior light absorption properties, making it ideal for not just solar cells, but a wide variety of ranging from optical fibers to waveguides and even lenses. The researchers suggest that if such a material were to be used as part of a traditional thin-film solar cell, it could increase light absorption by up to 15 percent in both the visible and ultraviolet range.

In interviews with the press, the researchers pointed out that theirs is the first time that such a nanocone structure has been created and perhaps just as importantly, noted that creating them would not require any new fabrication techniques. Also, they suggested that because of the better properties of the new material, “both the short circuit current and photoelectric conversion efficiency could be enhanced.”16-CNT Dye Solar Cells figure1

The researchers also note that unlike other nanostructures the oscillations generated by the nanocones are polarization insensitive, which means they do not have to be directionally perpendicular to nanoslits making them more useful in a wider array of applications because they can be directly integrated into current hardware. They add that they next plan to shift their efforts towards focusing on plasmonics that occur in other sorts of structures with different types of shapes.

Explore further: Nanocones could be key to making inexpensive solar cells

More information: Z. Yue et al. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index, Science Advances (2016). DOI: 10.1126/sciadv.1501536

Abstract
Topological insulators are a new class of quantum materials with metallic (edge) surface states and insulating bulk states. They demonstrate a variety of novel electronic and optical properties, which make them highly promising electronic, spintronic, and optoelectronic materials. We report on a novel conic plasmonic nanostructure that is made of bulk-insulating topological insulators and has an intrinsic core-shell formation. The insulating (dielectric) core of the nanocone displays an ultrahigh refractive index of up to 5.5 in the near-infrared frequency range. On the metallic shell, plasmonic response and strong backward light scattering were observed in the visible frequency range. Through integrating the nanocone arrays into a-Si thin film solar cells, up to 15% enhancement of light absorption was predicted in the ultraviolet and visible ranges. With these unique features, the intrinsically core-shell plasmonic nanostructure paves a new way for designing low-loss and high-performance visible to infrared optical devices.

 

 

 

The researchers also note that

A study conducted by the Solar Energy Industries Association (SEIA) indicates 2016 will be a banner year for U.S. solar installations.

The non-profit based in Washington D.C. predicts an estimated 119 percent increase this year due to tax incentives and price reductions.

First, Congress extended a 30 percent federal Investment Tax Credit for all different types of solar projects through 2019. Plus, the price of panels has dropped by 67 percent since 2010, according to the report.

SEIA’s investigation notes demand will grow in residential and commercial markets, but utility-scale installations will encompass 74 percent of the installations for 2016.

These factors could make solar installations an intriguing option for homeowners and businesses. Whole Foods agreed to a partnership with Solar City in which the alternative energy company will retrofit rooftop solar panels on 100 stores.

Fortune adds that electricity companies have nothing to worry about because solar energy only accounts for 1 percent of the nation’s power output.

By 2020, SEIA predicts solar power will grow to 3.5 percent.

Solar Fuel Cell U of T energy_cycle

University of Texas at Arlington chemists have developed new high-performing materials for cells that harness sunlight to split carbon dioxide and water into usable fuels like methanol and hydrogen gas. These “green fuels” can be used to power cars, home appliances or even to store energy in batteries.

“Technologies that simultaneously permit us to remove greenhouse gases like carbon dioxide while harnessing and storing the energy of sunlight as fuel are at the forefront of current research,” said Krishnan Rajeshwar, UTA distinguished professor of chemistry and biochemistry and co-founder of the University’s Center of Renewable Energy, Science and Technology.

“Our new material could improve the safety, efficiency and cost-effectiveness of solar fuel generation, which is not yet economically viable,” he added.

The new hybrid platform uses ultra-long carbon nanotube networks with a homogeneous coating of copper oxide nanocrystals. It demonstrates both the high electrical conductivity of carbon nanotubes and the photocathode qualities of copper oxide, efficiently converting light into the photocurrents needed for the photoelectrochemical reduction process.

Morteza Khaledi, dean of the UTA College of Science, said Rajeshwar’s work is representative of the University’s commitment to addressing critical issues with global environmental impact under the Strategic Plan 2020.

“Dr. Rajeshwar’s ongoing, global leadership in research focused on solar fuel generation forms part of UTA’s increasing focus on renewable and sustainable energy,” Khaledi said. “Creating inexpensive ways to generate fuel from an unwanted gas like carbon dioxide would be an enormous step forward for us all.”

For the solar fuel cells project, Rajeshwar worked with Csaba Janáky, an assistant chemistry professor at the University of Szeged in Hungary and Janáky’s master’s student Egon Kecsenovity. Janaky served as a UTA Marie Curie Fellow from 2011 to 2013.

The findings are the subject of a Feb. 15 minireview, “Electrodeposition of Inorganic Oxide/Nanocarbon Composites: Opportunities and Challenges,” published in ChemElectroChem Europe and a companion article in the Journal of Materials Chemistry A on “Decoration of ultra long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for photoelectrochemical CO2 reduction.”

“The performance of our hybrid has proved far superior to the properties of the individual materials,” Rajeshwar said. “These new hybrid films demonstrate five-fold higher electrical conductivity compared to their copper oxide counterparts, and generate a three-fold increase in the photocurrents needed for the reduction process.”

The new material also demonstrates much greater stability during long-term photoelectrolysis than pure copper oxide, which corrodes over time, forming metallic copper.

The research involved developing a multi-step electrodeposition process to ensure that a homogeneous coating of copper oxide nanoparticles were deposited on the carbon nanotube networks. By varying the thickness of the carbon nanotube film and the amount of electrodeposited copper oxide, the researchers were able to optimize the efficiency of this new hybrid material.

Rajeshwar also is working with Brian Dennis, a UTA associate professor of mechanical and aerospace engineering, and Norma Tacconi, a research associate professor of chemistry and biochemistry, on a project with NASA to develop improved methods for oxygen recovery and reuse aboard human spacecraft.

The team is designing, building and demonstrating a “microfluidic electrochemical reactor” to recover oxygen from carbon dioxide extracted from cabin air. The prototype will be built over the next months at the Center for Renewable Energy Science and Technology at UTA.

Rajeshwar joined the College of Science in 1983, is a charter member of the UTA Academy of Distinguished Scholars and senior vice president of The Electrochemical Society, an organization representing the nation’s premier researchers who are dedicated the advancing solid state, electrochemical science and technology.

He is an expert in photoelectrochemistry, nanocomposites, electrochemistry and conducting polymers, and has received numerous awards, including the Wilfred T. Doherty Award from the American Chemical Society and the Energy Technology Division Research Award of the Electrochemical Society.

Rajeshwar earned his Ph.D. in chemistry from the Indian Institute of Science in Bangalore, India, and completed his post-doctoral training in Colorado State University.


Story Source:

The above post is reprinted from materials provided byUniversity of Texas at Arlington. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. Kecsenovity, B. Endrődi, Zs. Pápa, K. Hernádi, K. Rajeshwar, C. Janáky. Decoration of ultra-long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2reduction. J. Mater. Chem. A, 2016; 4 (8): 3139 DOI:10.1039/C5TA10457B

Nanowires 020316 bf8802f7297fd2bfea985c26d0b9a636_w1440

California is committed to 33 percent energy from renewable resources by 2020. With that deadline fast approaching, researchers across the state are busy exploring options.

Solar energy is attractive but for widespread adoption, it requires transformation into a storable form. This week in ACS Central Science, researchers report that nanowires made from multiple metal oxides could put solar ahead in this race.

One way to harness solar power for broader use is through photoelectrochemical (PEC) water splitting that provides hydrogen for fuel cells. Many materials that can perform the reaction exist, but most of these candidates suffer from issues, ranging from efficiency to stability and cost.

Peidong Yang and colleagues designed a system where nanowires from one of the most commonly used materials (TiO2) acts as a “host” for “guest” nanoparticles from another oxide called BiVO4. BiVO4 is a newly introduced material that is among the best ones for absorbing light and performing the water splitting reaction, but does not carry charge well while TiO2 is stable, cheap and an efficient charge carrier but does not absorb light well.

Together with a unique studded nanowire architecture, the new system works better than either material alone.

The authors state their approach can be used to improve the efficiencies of other photoconversion materials.

Synopsis

We report the use of Ta:TiO2|BiVO4 as a photoanode for use in solar water splitting cells. This host−guest system makes use of the favorable band alignment between the two semiconductors. The nanowire architecture allows for simultaneously high light absorption and carrier collection for efficient solar water oxidation.

nanowires II 020316 oc-2015-004025_0008.gif

Metal oxides that absorb visible light are attractive for use as photoanodes in photoelectrosynthetic cells. However, their performance is often limited by poor charge carrier transport. We show that this problem can be addressed by using separate materials for light absorption and carrier transport. Here, we report a Ta:TiO2|BiVO4 nanowire photoanode, in which BiVO4 acts as a visible light-absorber and Ta:TiO2 acts as a high surface area electron conductor. Electrochemical and spectroscopic measurements provide experimental evidence for the type II band alignment necessary for favorable electron transfer from BiVO4 to TiO2. The host–guest nanowire architecture presented here allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent density of 2.1 mA/cm2 at 1.23 V vs RHE.

Introduction


Harnessing energy from sunlight is a means of meeting the large global energy demand in a cost-effective and environmentally benign manner. However, to provide constant and stable power on demand, it is necessary to convert sunlight into an energy storage medium.(1) An example of such a method is the production of hydrogen by photoelectrochemical (PEC) water splitting. The direct splitting of water can be achieved using a single semiconductor; however, due to the voltage requirement of the water splitting reaction and the associated kinetic overpotentials, only wide-band-gap materials can perform overall water splitting, limiting the efficiency due to insufficient light absorption.(2) To address this issue, a dual-band-gap z-scheme system can be utilized, with a semiconductor photoanode and photocathode to perform the respective oxidation and reduction reactions.(3) This approach allows for the use of lower-band-gap materials that can absorb complementary portions of the solar spectrum and yield higher solar-to-fuel efficiencies.(4, 5) In this integrated system, the charge flux is matched in both light absorbers of the photoelectrochemical cell. Therefore, the overall performance is determined by the limiting component. In most photoelectrosynthetic cells, this limiting component is the semiconductor photoanode.(6)
Metal oxides have been heavily researched as photoanode materials since few conventional light absorber materials are stable at the highly oxidizing conditions required for water oxidation.(7) However, the most commonly studied binary oxide, TiO2, has a band gap that is too large to absorb sunlight efficiently (∼3.0 eV), consequently limiting its achievable photocurrent.(8) While promising work has recently been done on stabilizing conventional light absorbers such as Si,(9) GaAs,(10) and InP,(11) the photovoltage obtained by these materials thus far has been insufficient to match with smaller-band-gap photocathode materials such as Si and InP in a dual absorber photoelectrosynthetic cell.(12, 13) Additionally, these materials have high production and processing costs. Small-band-gap metal oxides that absorb visible light and can be inexpensively synthesized, such as WO3, Fe2O3, and BiVO4, are alternative materials that hold promise to overcome these limitations.(14-16) Among these metal oxides, BiVO4 has emerged as one of the most promising materials due to its relatively small optical band gap of ∼2.5 eV and its negative conduction band edge (∼0 V versus RHE).(17, 18) Under air mass 1.5 global (AM1.5G) solar illumination, the maximum achievable photocurrent for water oxidation using BiVO4 is ∼7 mA/cm2.(16) However, the water oxidation photocurrent obtained in practice for BiVO4 is substantially lower than this value, mainly due to poor carrier transport properties, with electron diffusion lengths shorter than the film thickness necessary to absorb a substantial fraction of light.(17)
One approach for addressing this problem is to use two separate materials for the tasks of light absorption and carrier transport. To maximize performance, a conductive and high surface area support material (“host”) is used, which is coated with a highly dispersed visible light absorber (“guest”). This architecture allows for efficient use of absorbed photons due to the proximity of the semiconductor liquid junction (SCLJ). This strategy has been employed in dye sensitized (DSSC) and quantum dot sensitized solar cells (QDSSC).(19, 20) Using a host–guest scheme can improve the performance of photoabsorbing materials with poor carrier transport but relies upon appropriate band alignment between the host and guest. Namely, the electron affinity of the host should be larger, to favor electron transfer from guest to host without causing a significant loss in open-circuit voltage.(21) Nanowire arrays provide several advantages for use as the host material as they allow high surface area loading of the guest material, enhanced light scattering for improved absorption, and one-dimensional electron transport to the back electrode.(22) Therefore, nanowire arrays have been used as host materials in DSSCs, QDSSCs, and hybrid perovskite solar cells.(23-25) In photoelectrosynthetic cells, host–guest architectures have been utilized for oxide photoanodes such as Fe2O3|TiSi2,(26) Fe2O3|WO3,(27) Fe2O3|SnO2,(28) and Fe2TiO5|TiO2.(29) For BiVO4, it has been studied primarily with WO3|BiVO4,(30-32) ZnO|BiVO4,(33) and anatase TiO2|BiVO4.(34) While attractive for its electronic transport properties, ZnO is unstable in aqueous environments, and WO3 has the disadvantage of having a relatively positive flatband potential (∼0.4 V vs RHE)(14) resulting in potential energy losses for electrons as they are transferred from BiVO4 to WO3, thereby limiting the photovoltage of the combined system. Performance in the low potential region is critical for obtaining high efficiency in photoelectrosynthetic cells when coupled to typical p-type photocathode materials such as Si or InP.(12, 13) TiO2 is stable in a wide range of pH and has a relatively negative flat band potential (∼0.2 V vs RHE)(7) which does not significantly limit the photovoltage obtainable from BiVO4, while still providing a driving force for electron transfer. While TiO2 has intrinsically low mobility, doping TiO2 with donor type defects could increase the carrier concentration and thus the conductivity. Indeed, niobium and tantalum doped TiO2 have recently been investigated as potential transparent conductive oxide (TCO) materials.(35, 36) A host material with high carrier concentration could also ensure low contact resistance with the guest material.(37)
Using a solid state diffusion approach based on atomic layer deposition (ALD), we have previously demonstrated the ability to controllably and uniformly dope TiO2.(38) In this study we demonstrate a host–guest approach using Ta-doped TiO2 (Ta:TiO2) nanowires as a host and BiVO4 as a guest material. This host–guest nanowire architecture allows for simultaneously high light absorption and carrier collection efficiency, with an onset of anodic photocurrent near 0.2 V vs RHE, and a photocurrent of 2.1 mA/cm2 at 1.23 V vs RHE. We show that the synergistic effect of the host–guest structure results in higher performance than either pure TiO2 or BiVO4. We also experimentally demonstrate thermodynamically favorable band alignment between TiO2 and BiVO4 using spectroscopic and electrochemical methods, and study the band edge electronic structure of the TiO2 and BiVO4 using X-ray absorption and emission spectroscopies.

Article adapted from a American Chemical Society news release. To Read the FULL release, please click on the link provided below.

Publication: TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. Resasco, J et al. ACS Central Science (3 February, 2016): Click here to view.

GNT Thumbnail Alt 3 2015-page-001

Genesis Nanotechnology – “Great Things from Small Things”

Follow Us on Twitter @Genesisnanotech

Follow and ‘Like’ Us on Facebook

 Connect with Our Website

 

Sun Solar 061015 Fusion BBkFITY

Video Interview with Professor Ted Sargent at the University of Toronto

With global climate change on the rise, finding ways to capture renewable energy sources is becoming more urgent. Today, our energy needs are largely being met by fossil fuels, such as oil and coal, but we are rapidly depleting these natural resources, and damaging our environment by burning them for fuel. One sustainable alternative is solar energy. Prof. Ted Sargent, an electrical engineer at the University of Toronto, is working on making a new paint-based solar cell that would be low-cost, lightweight, portable, and efficient, bringing sustainable electricity anywhere that it is needed.

We picture a world in which solar cells are so convenient. They are on a carpet that you can roll out onto your roof, or they are on a decal that you can stick on the side of a streetcar or stick on your car, you can stick on your airplane wing. And they can be kind of adhered to any surface. And they can be used to meet the power needs of that automobile or plane or helicopter or home or tent; and they are ubiquitous.

Unlike fossil fuels, Sargent explains, “the sun is this incredible, vast resource. We get more sun reaching the Earth’s surface everyday than we need to power the world’s energy needs. In fact, in an hour, we get enough to meet our energy needs for a year; it’s that abundant.” To achieve a better solar cell, Prof. Sargent is working at the interface of chemistry, physics, materials science, and electrical engineering to understand the relationships between light and electrons. He is developing a liquid for solar capture that can be applied as a paint, and that can be printed using roll-to-roll processes similar to those used to print newspapers. These paints would absorb sunlight and use it to generate electricity.

Prof. Sargent envisions solar cells that are so minimal that installing one might be as simple as unrolling a sheet onto a rooftop, or applying a decal to a streetcar or phone. “We picture a world in which solar cells are so convenient… They are so little in their consumption of materials that we change the paradigm of solar energy from one that takes planning, major capital investment, to one where it’s all over the place because it’s so compelling and convenient,” says Sargent.

How do you envision the future of energy and power? Let us know in the comments.


Prof. Ted Sargent
Prof. Ted Sargent holds the Canada Research Chair in Nanotechnology at the University of Toronto, where he also serves as Vice Dean for Research for the Faculty of Applied Science and Engineering. He is a Fellow of the Royal Society of Canada, a Fellow of the AAAS “for distinguished contributions to the development of solar cells and light sensors based on solution-processed semiconductors” and a Fellow of the IEEE “for contributions to colloidal quantum dot optoelectronic devices.” He is CTO of InVisage Technologies of Menlo Park, CA; and is a co-founder of Xagenic Inc.


1 2 3
Recent Posts

Categories

Search