Great things from small things

Blog Archive

Filter by: Solar
Page 3

perovskiteso 072315This graphic shows the semi-cubic structure of perovskite materials, and how they would fit into a solar power device. An Argonne-Northwestern study found that perovskite-based solar technology has the quickest energy payback time of all …more

Solar panels are an investment—not only in terms of money, but also energy. It takes energy to mine, process and purify raw materials, and then to manufacture and install the final product.

Silicon-based panels, which dominate the market for solar power, usually need about two years to return this energy investment. But for technology made with perovskites—a class of materials causing quite a buzz in the solar research community—the energy payback time could be as quick as two to three months.

By this metric, perovskite modules are better than any that is commercially available today.

These are the findings of a study by scientists at Northwestern University and the U.S. Department of Energy’s Argonne National Laboratory. The study took a broad perspective in evaluating solar technology: In what’s called a cradle-to-grave life cycle assessment, scientists traced a product from the mining of its until its retirement in a landfill. They determined the ecological impacts of making a solar panel and calculated how long it would take to recover the energy invested.ANL_PMS_P_H

Perovskite technology has yet to be commercialized, but researchers everywhere are excited about the materials. Most projects, however, have been narrowly focused on conversion efficiency—how effectively the technology transforms sunlight into useable energy.

“People see 11 percent efficiency and assume it’s a better product than something that’s 9 percent efficient,” said Fengqi You, corresponding author on the paper and assistant professor of chemical and biological engineering at Northwestern. “But that’s not necessarily true.”

A more comprehensive way to compare solar technology is the energy payback time, which also considers the energy that went into creating the product.

This study looked at the energy inputs and outputs of two perovskite modules. A solar panel consists of many parts, and the module is the piece directly involved in converting energy from one form into another—sunlight into electricity.

Perovskites lag behind silicon in conversion efficiency, but they require much less energy to be made into a solar module. So perovskite modules pull ahead with a substantially shorter energy payback time—the shortest, in fact, among existing options for solar power.

“Appreciating energy payback times is important if we want to move perovskites from the world of scientific curiosity to the world of relevant commercial technology,” said Seth Darling, an Argonne scientist and co-author on the paper.

To get a complete picture of the environmental impacts a perovskite panel could have, the researchers also analyzed metals used for electrodes and other parts of the device.

One of the modules tested includes lead and gold, among other metals. Many perovskite models have lead in their active layer, which absorbs sunlight and plays a leading role in conversion efficiency. People in the research community have expressed concern because everyone knows lead can be toxic, Darling said.

Surprisingly, the team’s assessment showed that gold was much more problematic.

Gold isn’t typically perceived as hazardous, but the process of mining the precious metal is extremely damaging to the environment. The module in this study uses gold in its positive electrode, where charges are collected in the process of generating electricity.

The harmful effects of gold mining, an indirect impact of this particular perovskite technology, is something that could only be uncovered by a cradle-to-grave investigation, said Jian Gong, the study’s first author and a PhD student in You’s research group at Northwestern.

The team hopes that future projects use this same zoomed-out approach to identify the best materials and manufacturing processes for the next generation of solar technology—products that will have to be environmentally sustainable and commercially viable.

“Soon, we’re going to need to produce an extremely high number of ,” You said. “We don’t have time for trial-and-error in finding the ideal design. We need a more rigorous approach, a method that systematically considers all variables.”

While this paper featured a thorough environmental assessment of different solar power options, further studies are needed to factor in economic costs. Before putting a perovskite panel on the market, scientists will likely have to replace gold and other unsustainable materials, for both environmental and economic reasons, Darling said.

In addition, extending the lifetime of perovskite modules will be important in order to make sure they are stable enough for long-term commercial use, You said. Despite a few necessary improvements, he said perovskite technology could be commercialized within two years if researchers use comprehensive analysis to optimize the selection of raw materials and manufacturing.

One of the motivations for this study, according to the authors, was the need to improve technology so that solar energy can be scaled up in a big way.

Global energy demand is expected to nearly double by 2050, and Darling said there’s no question that must contribute a significant fraction.

The real question, Darling said, is “How quickly do we have to get a technology to market to save the planet? And how can we make that happen?”

Explore further: Solar panel manufacturing is greener in Europe than China, study says

More information: “Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts.” Energy Environ. Sci., 2015,8, 1953-1968 DOI: 10.1039/C5EE00615E

Energy Storage 061915 chemistsdevi The materials in most of today’s residential rooftop solar panels can store energy from the sun for only a few microseconds at a time. A new technology developed by chemists at UCLA is capable of storing solar energy for up to several weeks—an advance that could change the way scientists think about designing solar cells.


The findings are published June 19 in the journal Science.

The new design is inspired by the way that plants generate energy through photosynthesis.

“Biology does a very good job of creating energy from sunlight,” said Sarah Tolbert, a UCLA professor of chemistry and one of the senior authors of the research. “Plants do this through photosynthesis with extremely high efficiency.”

“In photosynthesis, plants that are exposed to sunlight use carefully organized nanoscale structures within their cells to rapidly separate charges—pulling electrons away from the positively charged molecule that is left behind, and keeping positive and negative charges separated,” Tolbert said. “That separation is the key to making the process so efficient.”


Energy Storage 061915 chemistsdevi


The scientists devised a new arrangement of solar cell ingredients, with bundles of polymer donors (green rods) and neatly organized fullerene acceptors (purple, tan). Credit: UCLA Chemistry 

To capture energy from sunlight, conventional rooftop solar cells use silicon, a fairly expensive material. There is currently a big push to make lower-cost solar cells using plastics, rather than silicon, but today’s are relatively inefficient, in large part because the separated positive and negative electric charges often recombine before they can become electrical energy.

“Modern plastic solar cells don’t have well-defined structures like plants do because we never knew how to make them before,” Tolbert said. “But this new system pulls charges apart and keeps them separated for days, or even weeks. Once you make the right structure, you can vastly improve the retention of energy.”

The two components that make the UCLA-developed system work are a polymer donor and a nano-scale acceptor. The polymer donor absorbs sunlight and passes electrons to the fullerene acceptor; the process generates electrical energy.

The plastic materials, called organic photovoltaics, are typically organized like a plate of cooked pasta—a disorganized mass of long, skinny polymer “spaghetti” with random fullerene “meatballs.” But this arrangement makes it difficult to get current out of the cell because the electrons sometimes hop back to the polymer spaghetti and are lost.

The UCLA technology arranges the elements more neatly—like small bundles of uncooked spaghetti with precisely placed meatballs. Some fullerene meatballs are designed to sit inside the spaghetti bundles, but others are forced to stay on the outside. The fullerenes inside the structure take electrons from the polymers and toss them to the outside fullerene, which can effectively keep the electrons away from the polymer for weeks.

“When the charges never come back together, the system works far better,” said Benjamin Schwartz, a UCLA professor of chemistry and another senior co-author. “This is the first time this has been shown using modern synthetic organic photovoltaic materials.”

In the new system, the materials self-assemble just by being placed in close proximity.

“We worked really hard to design something so we don’t have to work very hard,” Tolbert said.

The new design is also more environmentally friendly than current technology, because the materials can assemble in water instead of more toxic organic solutions that are widely used today.

“Once you make the materials, you can dump them into water and they assemble into the appropriate structure because of the way the materials are designed,” Schwartz said. “So there’s no additional work.”

The researchers are already working on how to incorporate the technology into actual .

Yves Rubin, a UCLA professor of chemistry and another senior co-author of the study, led the team that created the uniquely designed molecules. “We don’t have these materials in a real device yet; this is all in solution,” he said. “When we can put them together and make a closed circuit, then we will really be somewhere.”

For now, though, the UCLA research has proven that inexpensive photovoltaic can be organized in a way that greatly improves their ability to retain from sunlight.

Explore further: Improving the efficiency of solar energy cells

More information: Long-lived photoinduced polaron formation in conjugated polyelectrolyte-fullerene assemblies Science 19 June 2015: Vol. 348 no. 6241 pp. 1340-1343. DOI: 10.1126/science.aaa6850

Perovskite II 031615 uncoveringth Date:June 8, 2015

Source:National Institute for Materials Science (NIMS)

 Perovskite solar cells are promising low-cost and highly-efficient next-generation solar cells. The ad hoc Team on Perovskite PV Cells (Kenjiro Miyano, Team Leader) at the Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN) (Kohei Uosaki, Director-General), NIMS (Sukekatsu Ushioda, President), successfully developed perovskite solar cells with good reproducibility and stability as well as exhibiting ideal semiconducting properties.

Lead-halide-based perovskite (hereinafter simply referred to as perovskite) has been used as a solar cell material since six years ago. Perovskite solar cells are promising low-cost and highly-efficient next-generation solar cells because they can be produced through low-temperature processes such as spin coating, and generate a large amount of electricity due to their high optical absorption together with the high open-circuit voltage. As such, the research on perovskite solar cells is making rapid progress. In order to identify the semiconducting properties of perovskites and formulate guidelines for the development of highly efficient solar cell materials, NIMS launched an ad hoc Team on Perovskite PV Cells last October led by the deputy director-general of GREEN.

Renewable Energy Pix

While the conventional perovskite solar cells have demonstrated high conversion efficiency, they were not sufficiently stable plagued by their low reproducibility and the hysteresis in the current-voltage curves depending on the direction of the voltage sweeps. For this reason, the semiconducting properties of perovskites had not been identified. Researchers successfully created reproducible and stable perovskite solar cells as follows;

  1. They created perovskite solar cells with a simplified structure while strictly eliminating moisture and oxygen by employing the fabrication technique they had developed for the organic solar cells in the past.
  2. They found that the perovskite solar cells are stable and they observed no hysteresis in the current-voltage curve. Furthermore, they found that the perovskite solar cell material serves as an excellent semiconductor with ideal diode properties.

They proposed an equivalent circuit model that explains the semiconducting properties of perovskites based on analysis of the internal resistance of perovskite solar cells. This model indicated the existence of a charge transport process derived from an impurity level between the conduction and valence bands in the perovskite layer. Due to this transport process, the efficiency of perovskite solar cells may be suppressed to some extent.

In future studies, researchers will investigate into the cause of the impurity level and its influence on solar cells. In addition, they intend to remove the impurity level and improve the efficiency of the solar cells, thereby contributing to energy and environmental conservation.

This study was conducted at GREEN as a part of the MEXT-commissioned project titled “Development of environmental technology using nanotechnology.”

This study had been published in March 2015 in Applied Physics Letters, a journal issued by the American Institute of Physics.

Story Source:

The above post is reprinted from materials provided by National Institute for Materials Science (NIMS). Note: Materials may be edited for content and length.

Journal Reference:

  1. Kenjiro Miyano, Masatoshi Yanagida, Neeti Tripathi, Yasuhiro Shirai. Simple characterization of electronic processes in perovskite photovoltaic cells. Applied Physics Letters, 2015; 106 (9): 093903 DOI: 10.1063/1.4914086
Solar Cell Nano 061515 id40409 It isn’t cars and vehicle traffic that produce the greatest volumes of climate gas emissions – it’s our own homes. But new research will soon be putting an end to all that!
The building sector is currently responsible for 40% of global energy use and climate gas emissions. This is an under-communicated fact in a world where vehicle traffic and exhaust emissions get far more attention.
In the future, however, we will start to see construction materials and high-tech systems integrated into building shells that are specifically designed to remedy this situation. Such systems will be intelligent and multifunctional. They will consume less energy and generate lower levels of harmful climate gas emissions.
With this objective in mind, researchers at SINTEF are currently testing microscopic nanoparticles as insulation materials, applying voltages to window glass and facades as a means of saving energy, and developing solar cells that prevent the accumulation of snow and ice.
lectrochromic windows
Electrochromic windows are already on the market. They are frequently called ‘smart’ windows.
Giving industry a boost
Research Director Susie Jahren and Research Manager Petra Rüther are heading SINTEF’s strategic efforts in the field of future construction materials. They say that although there are major commercial opportunities available in the development of green and low carbon building technologies, the construction industry is somewhat bound by tradition and unable to pay for research into future technology development.
“The strategic process currently being driven by SINTEF Building and Infrastructure and SINTEF Materials and Chemistry allows us to position ourselves to assist in the industry’s development while at the same time also giving it a boost”, say Jahren and Rüther. “Our researchers are working hard to produce innovative ideas about the directions future development might take. Then we check to see if the ideas they come up with are viable from a cost-benefit and environmental perspective”, they say.
Nanotechnology in the walls
SINTEF researcher Bente Gilbu Tilset is sitting in her office in Forskningsveien 1 in Oslo. She and her colleagues are looking into the manufacture of super-insulation materials made up of microscopic nanospheres.
“Our aim is to create a low thermal conductivity construction material “, says Tilset. “When gas molecules collide, energy is transferred between them. If the pores in a given material are small enough, for example less than 100 nanometres in diameter, a molecule will collide more often with the pore walls than with other gas molecules. This will effectively reduce the thermal conductivity of the gas. So, the smaller the pores, the lower the conductivity of the gas”, she says.
While standard insulation materials such as mineral wools have conductivities in the region of 35 milliwatts per metre, nanospheres may exhibit values as low as about 20 mW/m. This is lower than the thermal conductivity of air. At present, these spheres are only available as a powder, but our dream is to aggregate them to form flexible mats.
In the future, nano-insulation materials such as these will enable us to reduce existing insulation material thicknesses. The mats will probably be more expensive than current products such as ‘Glava’, but will offer a better option in situations where space is at a premium such as in protected buildings where there are restrictions on making modifications to facades. They also work well as insulation materials for oil pipelines and industrial tanks.
Building-integrated solar cells
In the future, solar cells installed in panels fixed to our roofs and walls will be a thing of the past. Instead, they will be integrated into the roof tiles and external wall panelling materials. This will save on building materials and construction costs, and will reduce electricity bills.
In spite of Norway’s long, dark, winter nights, we are exposed to just as much daylight as Germany or the UK. A colder climate is in fact an advantage because solar cells are more effective in the cold.
“We reckon that this will become part of the Norwegian building tradition”, says physicist and SINTEF researcher Tore Kolås.
As part of the project “Bygningsintegrerte solceller for Norge” (Building Integrated Photovoltaics, BIPV Norway), researchers from SINTEF, NTNU, the IFE and Teknova, are planning to look into how we can utilise solar cells as integral housing construction components, and how they can be adapted to Norwegian daylight and climatic conditions.
One of the challenges is to develop a solar cell which prevents the accumulation of snow and ice. The cells must be robust enough to withstand harsh wind and weather conditions and have lifetimes that enable them to function as electricity generators.
“However, we will also be developing the construction materials so as to optimise their ability to adapt to Norwegian daylight conditions where the sun is low in the sky and solar radiation commonly diffuse”, says Kolås. “Our aim, purely and simply, is to develop systems that are so effective that it will be natural for developers to consider them when evaluating building materials in the design phase.
Give and take
Today, we spend 90 per cent of our time indoors. This is as much as three times more than in the 1950s. We are also letting less daylight into our buildings as a result of energy considerations and construction engineering requirements. Research shows that daylight is very important to our health, well-being and biological rhythms. It also promotes productivity and learning. So the question is – is it possible to save energy and get the benefits of greater exposure to daylight?
Technologies involving thermochromic, photochromic and electrochromic pigments can help us to control how sunlight enters our buildings, all according to our requirements for daylight and warmth from the sun. And with energy savings in mind, it may also be useful to employ materials that both absorb and release energy. So-called “phase-changing materials” offer this possibility.
For example, materials of this type can enable us to set the temperature of a room at 22 degrees. If the temperature falls below this level, the material will release heat into the room, or absorb it if the temperature rises above the stipulated level.
“Another possibility is the use of electrochromic coatings”, says researcher Bjørn Petter Jelle. “This is a controllable technology made possible by applying an electrical voltage to a window. Users will be able to fix the level of solar radiation entering a building. This contrasts with adaptive technologies which adjust their function to ambient temperatures and other environmental factors. In the case of thermochromic windows, the glass changes colour according to the temperature, whereas photochromic windows change colour in response to changes in solar radiation intensity. Adaptive technologies enable us to decide the degree of adjustment as determined by temperature variation and the level of intensity of solar radiation.
Jelle says that electrochromic windows are already on the market. “They are frequently called ‘smart’ windows. Other non-traditional approaches used in windows as a means of exploiting external factors include the use of aerogel”, he says.
Self-healing concrete
Every year, between 40 and 120 million Euros are spent in Europe on the maintenance of bridges, tunnels and construction walls. These time-consuming and costly activities have to be reduced, and the project CAPDESIGN is aiming to make a contribution in this field.
The objective of the project is to produce concrete that can be ‘restored’ after being exposed to loads and stresses by means of self-healing agents that prevent the formation of cracks. The method involves mixing small capsules into the wet concrete before it hardens. These remain in the matrix until loads or other factors threaten to crack it. The capsules then burst and the self-healing agents are released to repair the structure.
At SINTEF, researchers are working with the material that makes up the capsule shells. The shell has to be able to protect the self-healing agent in the capsules for an extended period and then, under the right conditions, break down and release the agents in response to the formation of cracks caused by temperature, pH, or a load or stress resulting from an impact or shaking. At the same time, the capsules must not impair the ductility or the mechanical properties of the newly-mixed concrete.
“We’ve carried out stress tests to measure both static and impact strength”, says Huaitian Bu at SINTEF Materials and Chemistry. “And we’ve now developed a technology called FunzioNano® by which we can manufacture hybrid nanoparticles which will improve the properties of the shells”, he says.
A major EU application is currently being prepared for a project where the aim over time is to develop a concrete with a particular focus on energy efficiency, longer lifetime and robustness. The concrete is planned to be used in load-bearing constructions in harsh, low temperature (Arctic), or high temperature (desert), climatic conditions. Nanoparticles are available that will provide the special properties required.
When passive houses become the standard in Norway, house building will become more expensive, regardless of the materials chosen. For this reason, some people believe that in ten years’ time an increasing number of private homes will be built in concrete because this material has thermal properties that promote optimal energy efficiency.
Source: SINTEF

Read more: Solar cells in the roof and nanotechnology in the walls

1-magneticnanoMagnetic nanoparticles can increase the performance of solar cells made from polymers – provided the mix is right. This is the result of an X-ray study at DESY’s synchrotron radiation source PETRA III.

Adding about one per cent of such nanoparticles by weight makes the solar cells more efficient, according to the findings of a team of scientists headed by Prof. Peter Müller-Buschbaum from the Technical University of Munich. They are presenting their study in one of the upcoming issues of the journal Advanced Energy Materials (published online in advance).

Polymer, or organic, solar cells offer tremendous potential: They are inexpensive, flexible and extremely versatile. Their drawback compared with established is their lower efficiency. Typically, they only convert a few per cent of the incident light into electrical power. Nevertheless, organic solar cells are already economically viable in many situations, and scientists are looking for new ways to increase their efficiency.

One promising method is the addition of nanoparticles. It has been shown, for example, that absorb additional sunlight, which in turn produces additional electrical charge carriers when the energy is released again by the gold particles.

Müller-Buschbaum’s team has been pursuing a different approach, however. “The light creates pairs of charge carriers in the solar cell, consisting of a negatively charged electron and a positively charged hole, which is a site where an electron is missing,” explains the main author of the current study, Daniel Moseguí González from Müller-Buschbaum’s group. “The art of making an organic solar cell is to separate this electron-hole pair before they can recombine. If they did, the charge produced would be lost. We were looking for ways of extending the life of the electron-hole pair, which would allow us to separate more of them and direct them to opposite electrodes.”

Crystalline structures within polymer solar cells cause characteristic diffraction patterns in experiments with synchrotron radiation. Credit: Credit: TU München

This strategy makes use of a quantum physical principle which states that electrons have a kind of internal rotation, known as spin. According to the laws of quantum physics, this spin has a value of 1/2. The positively charged hole also has a spin of 1/2. The two spins can either add up, if they are in the same direction, or cancel each other out if they are in opposite directions. The electron-hole pair can therefore have an overall spin of 0 or 1. Pairs with a spin of 1 exist for longer than those with an overall spin of 0.

The researchers set out to find a material that was able to convert the spin 0 state into a spin 1 state. This required nanoparticles of heavy elements, which flip the of the electron or the hole so that the spins of the two particles are aligned in the same direction. The iron oxide magnetite (Fe3O4) is in fact able to do just this. “In our experiment, adding magnetite nanoparticles to the substrate increased the efficiency of the solar cells by up to 11 per cent,” reports Moseguí González. The lifetime of the electron-hole pair is significantly prolonged.

Adding nanoparticles is a routine procedure which can easily be carried out in the course of the various methods for manufacturing organic solar cells. It is important, however, not to add too many nanoparticles to the solar cell, because the internal structure of organic solar cells is finely adjusted to optimise the distance between the light-collecting, active materials, so that the pairs of charge carriers can be separated as efficiently as possible. These structures lie in the range of 10 to 100 nanometres.

“The X-ray investigation shows that if you mix a large number of nanoparticles into the material used to make the solar cell, you change its structure”, explains co-author Dr. Stephan Roth, head of DESY’s beam line P03 at PETRA III, where the experiments were conducted. “The solar cell we looked at will tolerate magnetite nanoparticle doping levels of up to one per cent by mass without changing their structure.”

The scientists observed the largest effect when they doped the substrate with 0.6 per cent nanoparticles by weight. This caused the efficiency of the polymer solar cell examined to increase from 3.05 to 3.37 per cent. “An 11 percent increase in energy yield can be crucial in making a material economically viable for a particular application,” emphasises Müller-Buschbaum.

The researchers believe it will also be possible to increase the efficiency of other by doping them with nanoparticles. “The combination of high-performance polymers with holds the promise of further increases in the efficiency of organic in the future. However, without a detailed examination, such as that using the X-rays emitted by a synchrotron, it would be impossible to gain a fundamental understanding of the underlying processes involved,” concludes Müller-Buschbaum.

 Explore further: New technique helps probe performance of organic solar cell materials

More information: Advanced Energy Materials, 2015; DOI: 10.1002/aenm.201401770

A Breakthrough Technology

HyperSolar  ( has developed a breakthrough technology to make renewable hydrogen using sunlight and any source of water. Renewable hydrogen, the cleanest and greenest of all fuels, can be used as direct replacement for traditional hydrogen, which is usually produced by reforming CO2 emitting natural gas.

Inspired By Photosynthesis

By optimizing the science of water electrolysis, our low cost photoelectrochemical process efficiently uses sunlight to separate hydrogen from any source of water to produce clean and environmentally friendly renewable hydrogen. Our innovative solar hydrogen generator eliminates the need for conventional electrolyzers, which are expensive and energy intensive. We believe that our solution will produce the lowest cost renewable hydrogen available in the market today.

The Next Great Renewable Fuel

Hydrogen is the most abundant element and cleanest fuel in the universe. Unlike hydrocarbon fuels, that produce harmful emissions, hydrogen fuel produces pure water as the only byproduct. Using our low cost method to produce renewable hydrogen, we intend to enable a world of distributed hydrogen production for renewable electricity and hydrogen fuel cell vehicles.

Hydrogen expert to join R&D team focused on increasing the water-splitting voltage of proprietary hydrogen technology

SANTA BARBARA, CA – February 18, 2015 HyperSolar, Inc. (OTCQB: HYSR), the developer of a breakthrough technology to produce renewable hydrogen using sunlight and water, today announced that Dr. Wei Cheng, a post-doctoral researcher who has extensive experience in developing hydrogen production applications and previously served the Company during his time as visiting scholar at the University of California, Santa Barbara, will be joining HyperSolar’s research and development team at the University of Iowa.

Dr. Cheng focuses on developing a low-cost way to make photo-electrochemical devices for producing hydrogen in wastewater. Dr. Cheng received his bachelor’s degree in Materials Science and Technology from Nanjing University of Aeronautics and Astronautics, his master’s degree and PhD in Materials Physics and Chemistry from Shanghai Jiao Tong University, China. He is currently a post-doctoral researcher at the University of Iowa. His previous works include producing hydrogen using low voltage electro-oxidation of organic wastewater and preparing non-toxic metal sulfide semiconductors with low-cost materials such as tin monosulfide (SnS) and Cu2ZnSnS4.

As HyperSolar’s technology progresses, the market for hydrogen fuel continues to build momentum. Just recently, the “big 3” auto manufacturers in Japan – Nissan, Toyota, and Honda – jointly announced their goal of “working together to help accelerate the development of hydrogen station infrastructure for fuel cell vehicles (FCVs).” Among several topics, hydrogen fuel infrastructure with respect to fueling stations was emphasized throughout the announcement as being of utmost importance. HyperSolar believes that its hydrogen producing technology, which uses a completely renewable process capable of being implemented at or near the point of distribution, will support fueling infrastructure upon commercialization.

“We are thrilled that Dr. Cheng will be joining our University of Iowa team to focus on increasing the water-splitting voltage required for commercialization of real-world systems,” said Tim Young, CEO of HyperSolar. “Dr. Cheng’s background in producing hydrogen, along with his familiarity with HyperSolar technology, makes him an integral part of our research and development team. As hydrogen fuel solutions continue to garner attention from major corporations around the world, we are confident that our technology will serve many applications within both consumer and commercial industries.”

HyperSolar’s technology is based on the concept of developing a low-cost, submersible hydrogen production particle that can split water molecules using sunlight without any other external systems or resources – acting as artificial photosynthesis. A video of an early proof-of-concept prototype can be viewed at

Date: Wednesday, February 18, 2015

1 2 3
Recent Posts