Great things from small things

Blog Archive

Filter by: Stanford

MIT Desal Shock 111315 bt1511_MIT-fracking-pondAs the availability of clean, potable water becomes an increasingly urgent issue in many parts of the world, researchers are searching for new ways to treat salty, brackish or contaminated water to make it usable. Now a team at MIT has come up with an innovative approach that, unlike most traditional desalination systems, does not separate ions or water molecules with filters, which can become clogged, or boiling, which consumes great amounts of energy.

Instead, the system uses an electrically driven shockwave within a stream of flowing water, which pushes salty water to one side of the flow and fresh water to the other, allowing easy separation of the two streams. The new approach is described in the journal Environmental Science and Technology Letters, in a paper by professor of chemical engineering and mathematics Martin Bazant, graduate student Sven Schlumpberger, undergraduate Nancy Lu, and former postdoc Matthew Suss.

This approach is “a fundamentally new and different separation system,” Bazant says. And unlike most other approaches to desalination or water purification, he adds, this one performs a “membrane-less separation” of ions and particles.

Membranes in traditional desalination systems, such as those that use reverse osmosis or electrodialysis, are “selective barriers,” Bazant explains: They allow molecules of water to pass through, but block the larger sodium and chlorine atoms of salt. Compared to conventional electrodialysis, “This process looks similar, but it’s fundamentally different,” he says.

In the new process, called shock electrodialysis, water flows through a porous material —in this case, made of tiny glass particles, called a frit — with membranes or electrodes sandwiching the porous material on each side. When an electric current flows through the system, the salty water divides into regions where the salt concentration is either depleted or enriched. When that current is increased to a certain point, it generates a shockwave between these two zones, sharply dividing the streams and allowing the fresh and salty regions to be separated by a simple physical barrier at the center of the flow.

“It generates a very strong gradient,” Bazant says.

Even though the system can use membranes on each side of the porous material, Bazant explains, the water flows across those membranes, not through them. That means they are not as vulnerable to fouling — a buildup of filtered material — or to degradation due to water pressure, as happens with conventional membrane-based desalination, including conventional electrodialysis. “The salt doesn’t have to push through something,” Bazant says. The charged salt particles, or ions, “just move to one side,” he says.

The underlying phenomenon of generating a shockwave of salt concentration was discovered a few years ago by the group of Juan Santiago at Stanford University. But that finding, which involved experiments with a tiny microfluidic device and no flowing water, was not used to remove salt from the water, says Bazant, who is currently on sabbatical at Stanford.

The new system, by contrast, is a continuous process, using water flowing through cheap porous media, that should be relatively easy to scale up for desalination or water purification. “The breakthrough here is the engineering [of a practical system],” Bazant says.

One possible application would be in cleaning the vast amounts of wastewater generated by hydraulic fracturing, or fracking. This contaminated water tends to be salty, sometimes with trace amounts of toxic ions, so finding a practical and inexpensive way of cleaning it would be highly desirable. This system not only removes salt, but also a wide variety of other contaminants — and because of the electrical current passing through, it may also sterilize the stream. “The electric fields are pretty high, so we may be able to kill the bacteria,” Schlumpberger says.

The research produced both a laboratory demonstration of the process in action and a theoretical analysis that explains why the process works, Bazant says. The next step is to design a scaled-up system that could go through practical testing.

Initially at least, this process would not be competitive with methods such as reverse osmosis for large-scale seawater desalination. But it could find other uses in the cleanup of contaminated water, Schlumpberger says.

Unlike some other approaches to desalination, he adds, this one requires little infrastructure, so it might be useful for portable systems for use in remote locations, or for emergencies where water supplies are disrupted by storms or earthquakes.

Maarten Biesheuvel, a principal scientist at the Netherlands Water Technology Institute who was not involved in this research, says the work “is of very high significance to the field of water desalination. It opens up a whole range of new possibilities for water desalination, both for seawater and brackish water resources, such as groundwater.”

Biesheuvel adds that this team “shows a radically new design where within one and the same channel ions are separated between different regions. … I expect that this discovery will become a big ‘hit’ in the academic field. … It will be interesting to see whether the upscaling of this technology, from a single cell to a stack of thousands of cells, can be achieved without undue problems.”

The research was supported by the MIT Energy Initiative, Weatherford International, the USA-Israel Binational Science Foundation, and the SUTD-MIT Graduate Fellows Program.

Source: Massachusetts Institute of Technology

MIT 061215 carbonx299_0 A group of Stanford researchers have come up with a nanoscale “designer carbon” material that can be adjusted to make energy storage devices, solar panels, and potentially carbon capture systems more powerful and efficient.


The designer carbon that has reached the market in recent years shares the Swiss-cheese-like structure of activated carbon, enhancing its ability to catalyze certain chemical reactions and store electrical charges; but it’s “designed” in the sense that the chemical composition of the material, and the size of the pores, can be manipulated to fit specific uses.

The designer carbon tested at Stanford is “both versatile and controllable,” according to Zhenan Bao, a professor of chemical engineering and the senior author of the study, which appeared in the latest issue of the journal ACS Central Science.

“Producing high-surface-area carbons with controlled chemical composition and morphology is really challenging,” says Bao. Other methods currently available, she says, “are either quite expensive or they don’t offer control over the chemical structure and morphology.”

The work of Bao and her team represents the latest step forward in a rapidly advancing field with huge promise for a variety of clean-tech applications. Seattle-based EnerG2, for example, has pioneered designer carbons in several applications, particularly lithium-ion batteries. Replacing graphite in the batteries’ anode with designer carbon has resulted in dramatic performance improvements—up to a 30 percent increase in the batteries’ storage capacity, according to EnerG2 founder and CTO Aaron Feaver.

Essentially, designer carbon material is created by baking a precursor material at very high temperatures and then chemically treating it to produce a porous 3-D structure with an enormous surface area. The Stanford team began with a complex polymer that forms an interconnected framework. The cooking temperature can be adjusted, from 300 C up to 900 C, to fine-tune the material’s properties. The result is sheets of carbon that are as little as one nanometer thick, with more than 4,000 square meters of surface area per gram.

Designer carbon usually costs more than other anode materials, particularly graphite, but Bao says the raw materials for the Stanford experiments cost less than $10 for every kilogram of carbon produced.

Two of the most promising applications tested at Stanford are lithium-sulfur batteries and supercapacitors. Lithium-sulfur batteries have several advantages over conventional lithium-ion systems, but also one serious flaw: they tend to leak lithium polysulfide, causing the battery to fail. The nano-sized pores of the designer carbon prevent that from happening.

Supercapacitors are energy-storage devices that charge and discharge at very high rates. Bao’s team found that supercapacitor electrodes with the new carbon had electrical conductivity three times that of ones with conventional activated carbon.

Another form of designer carbon is carbon nanotubes, which could be suitable for a number of applications including energy storage. In 2012, MIT scientist Joel Schindall unveiled a method of growing carbon nanotube “forests” that could produce supercapacitors whose energy-storage capacity rivals that of batteries.

The most far-reaching application for designer carbon, though, would be in carbon capture—a technology that has been talked about for years but has never been economically viable. Designer carbon material with pores of a certain size shows great promise in selecting for carbon dioxide, which would condense onto the surface of the synthetic carbon in a capture system.

“Our synthetic approach gives us a very versatile, tunable material, and we are developing a different version of the carbon that’s highly suitable for carbon capture,” says Bao. That work has just been submitted for publication, she adds.

Editor’s note: This story has been updated to clarify the nanoscale carbon advancement from Stanford.

Recent Posts



Nano Enabled Super Capacitors and Batteries for the Future of Energy Storage

Follow Us on Twitter @Genesisnanotech

Could not authenticate you.